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The influence of an electric field E on the nature of electronic states in a one-dimensional
disordered Kronig-Penney model is studied. By study of the Poincare map of the Kronig-
Penney model in a field, the transmission coefficient T was calculated as a function of sys-
tem size L. T is found to behave as L "(s), with n-I/P, for small F which indicates pow-
er-law localization. In this regime, it is predicted that the resistance R(E) =R(0)(l-b~P~),
which may be checked experimentally.

PACS numbers: 72.10.Bg, 71.50.+t, 71.55.Jv

The question of localization of the eigenstates
in one dimensional (1D) disordered systems has
been extensively studied both numerically and
analytically. ' lt is by now well established that
in a 1D model all eigenstates are localized regard-
less of the amount of disorder. ' Experiments on
quasi one-dimensional disordered metallic sys-
tems (thin wires) are in qualitative agreement
with localization theory. ' %bile much work has
been done for the study of the energy spectrum
of an electron in a finite or semi-infinite periodic
lattice in the presence of an electric field, ' very
little is known for the problem of a 1D disordered
system in an electric field, "especially regard-
ing the nature of the localized states.

It is the purpose of this Letter to examine the
size dependence of the transmission coefficient

T in a 1D disordered system when an electric
field I is present. The study of the transmission
coefficient has been used successfully to analyze
the nature of the electronic states. ' " The model
studied in this paper is

+ Q b„5(x—n) —Fx g(x) =Kg(x),d2

where b„ is the strength of the nth 6-function po-
tential, taken to be a random variable with rec-
tangular probability distribution of width O'. Here
F is the product of the electric field by the elec-
tron charge e. The numerical study of Eq. (1)
can be simplified if we use the Poincard map
representation of the Schrodinger equation. This
consists in relating the wave-function amplitudes
at different lattice sites. Specifically, defining
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g„= ((x=n"), Bellisard et al." show that Eq. (1)
(when F =0) can be exactly mapped to a finite dif-
ference equation of the form

g„„+g„,—A„(„=(2 cosE'i')g„. (2)

In the periodic case, where all the b„=b„one
recovers the complete band structure of the
Kronig-Penney model. In the disordered case,
we recognize that Eq. (2) is formally analogous
to the well studied, tight-binding Anderson mod-
el. In that case we know that all states are ex-
ponentially localized with localization length"

l, =24(4 —ETB')/WTB', for energies ET~(2, ETB
g0, and disorder 8'» ~ l. If we substitute E»
=2cosvE, and WT~'=W'sin(vE)/E, we get that
in the Kronig-Penney model the localization
length is given by

l, =96E/W'

Equation (3) is in good agreement with our nu-
merical results for l, (F =0).

In order to map Eq. (1) to a finite second-order
difference equation it is convenient to approximate
the potential Fx by a step function. " Once this is
done, the solutions to Eq. (1) in between 6 poten-
tials are plane waves instead of Airy functions.
The corresponding Poincard map then reads

(4)

k I exp(2ik, a) —11'
k, lt/)„„—g~„exp(- ik, a) j' '

where k =E' ', k, = (E+FL)' ', and L=Na. We
have studied the random variable lnT because it
is statistically well behaved, both in the F= 0
case' "and in the F g 0 case. ' We calculated
lnT for rather large systems up to I.= 5 &&10' and
ensemble averages with 1 0&10' members in order
to obtain lnT to within 1/o-2/o accuracy. This
was necessary to extract the I dependence and
the exponents in lnT.

It is seen that when F=0 the states are expo-
nentially localized with l, =96E/W', as expected,
so that the ensemble average (lnT) =- 2L/l, .
This result is shown in the inset of Fig. 1. At
finite electric field —(lnT) follows a, straight line
2L/l, for small L, but for larger lengths is seen
to bend and increase very slowly (inset, Fig. 1).
This saturation occurs about the point where the
electrostatic energy Fl is approximately equal to
E. To find out what is the character of the states
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with k„= (E+nF)'i'. Equation (4) reduces to Eq.
(2) when we take F=0, as it should. This form for larger t. we plot —(lnT) vs lnI. in Fig. 1. We
of Eq. (1) is very useful for numerical work since find that for the values of F considered, —(lnT)
it is a recursion formula and one is able to treat vs lnl. is linear with lnL, therefore suggesting
very long systems, being limited only by the corn- that T™I ~'. This behavior implies that the
puter time available. To carry out the iterations states are weakly localized. This type of power-
we can give as initial values for g, and g, the law localization is expected to be dominant when-
plane waves g, =exp(- iE'i'a) and g, =exp(- 2i ever FL)E. We notice that there is an oscilla-
xE'i'a), where E is the electron energy before it tory structure in the numerical data evident at
reaches the region where the electric field is ap- low fields. The error bars in Fig. 1 are, how-
plied, and g is the lattice constant. Iterating Eq. ever, smaller than the size of the points; there-
(4) we can calculate the wave functions g~„and fore, we believe that the oscillations are real
p„„to obtain the transmission coefficient from and related to interband or Zener-type transi-
the relation tions.

ln Fig. 2 we plot —l, (lnT)/2L vs FL/E for all
the cases examined. The results follow a uni-
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versal curve of the form
—l, (inT)/2L = (1/x)ln(1+ x)

with x=FL/E. It should be pointed out that the
solid curve in Fig. 2 gives an excellent repre-
sentation of all the data points obtained for dif-
ferent F, lV, and L. Points for x&25 are not
plotted but agreement with Eq. (6) and the data
is better than 1/o.

The analytic form of Eq. (6) can be derived
from the following physical argument. When F
=0 we know that lnT= —2L/l, (E), with l, (E) given
in Eq. (3). In the case where F e0, we notice that
the term Fx in Eq. (1) cha, nges very slowly for
small distances. In this ease E, becomes an ex-
plicit function of x. In the spirit of an adiabatic
approximation we can replace E -E+ Ex in Eq.
(3) and take a coarse-grain average over a dis-
tance L. Specifically,

InT(L) -=f lnT(x)dx= —2 f dx/l, (E+ Fx).

Doing the integration we recover the result given
in Eq. (6). Notice that this result is inherently
related to the specific E dependence of l„and
therefore essential in leading to the power-law
localization given in Eq. (6). If on the other ha. nd

l, (E) E' with v&1, T(L) -const g0 as L-~.
In the large-x limit Eq. (6) leads to the result

T= p(F)L "~ with n=+2E/l, F and lnp=- t2E/
l, F]ln(F/E). In Fig. 3 the numerically ealeulated
values of n vs 1/F are plotted. Note that all the
points fall on a line that passes through zero.
The solid line in Fig. 3 is the theoretical predic-
tion and agrees well with the numerical data.
This seems to imply that there is no electric
field that makes the exponent o equal to zero.
Qne could, however, define a critical field F, '"
from the relation n(F, "')=1; i.e. , when T-1/L
the conductivity, which is proportional to TL,,
becomes independent of L. The relation T- 1/L

FIG. 3. Plot of various exponents vs 1/P. The solid
circles represent the results for the exponent m of T.
The solid line is the theoretical prediction 2E/l, E.
The dashed Line is simply related to o. by n& = n - 0.5.
The hatched area represents the exponent n, for the
wave function.

is found, for example, in systems with extended
states and random phases in the absence of a
field. From Fig. 3 we find that F'" =0.25." De-
fining e, as the exponent on the right-hand side of
Eq. (5), without the k/k, factor, we obtain n= n,
+0.5. Since n, gives the decay of the wave func-
tion, another critical field F, '" can be defined
from the relation n, (F, '")=0. As can be seen
from Fig. 3, F, '" =0.5. Another check on the
value of F, '" can be obtained by studying the be-
havior of g(L) at site L. If we define g(L)-L 2,

then the values of n, lie in the hatched area of

Fig. 3. It is found that for small F, n, depends
on L, but when F is large e, is L independent.
It is seen that the field at which cy, =0 is F, '",
i.e., the same F at which n, =0. Prigodin' de-
fines a critical field as that when ( ceases to be
normalizable. It is difficult to calculate numer-
ically the exact eigenfunctions and to get an ex-
ponent for their length dependence. Nonetheless,
from g(L) -L"2, in order to have a g normaliz-
able we must have n, «0.5, which implies F, '"
-=0.08. Therefore there is no unique definition
of the critical field. In fact, the critical field
can be quite different for different definitions.
All of our numerical results do not show any sud-
den change of the wave function at a particular
field strength.

We now turn to the interesting question of find-
ing the resistance variation as a function of the
electric field. In the ease of zero electric field
it was found that the resistance Fi',, satisfies the
relation B,=(xfi/e')(I/T —1). Trying to define a
resistance for arbitrary field is of course not
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easy. However, it is clear that the reflection
and transmission coefficients are well defined
quantities for arbitrary field F. We can then de-
fine formally a resistance for arbitrary F as
R(F) [1/T(E) -1]which should be right in the
small-F limit. Following the scaling arguments
of Anderson et al. ,

' it can be seen easily that the
law of composition of two blocks with resistances
R, (E) and R,(F) satisfies the equation A(F) =R, (E)
+R,(E)+2R, (E)R,(E). This leads to the result
that in[1+ A(E)] = lnT(F) is the right quantity to
take averages over. Calculating this average
analytically is not trivial. However, from our
numerical results we have obtained

(in[1+ A(F)]) = (21./f, x)ln(1+ x).

In the limit when F is small and l, »L we can ex-
pand the above result to get

L3
WE)=R, (&- 2

is'i+, s'+. . . ) .
C

In terms of the current I, we can make the sub-
stitution E= (p, /A)I, where p, is the residual re-
sistivity for F= 0 and A, is the area of the wire.
From this result we predict that the first-order
correction to the deviation from Ohmic behavior
of A is linea~ in the current and not quadratic as
the standard Joule heating predicts. This be-
havior can be seen experimentally by measuring
the resistance at very low currents and tempera-
tures in thin wires. '
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