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Quantum Conduction on a Cayley Tree

B. Shapiro
DePartment of Physics, Technion Isr-ael Institute of Technology, Haifa, Israel

(Received 27 December 1982)

Quantum. resistance of a Cayley tree composed of one-dimensional random scatterers is
considered. The strength of a scatterer is characterized by its typical resistance p 0. It is
shown that a metal-insulator transition occurs at some critical scattering strength p«,
which depends on the coordination number of the tree. The resistance of an infinite tree
diverges for pp & po, and saturates at Some finite value for po& pp&.

PACS numbers: 72.10.Bg, 71.30.+h, 71.55.Jv

The main feature of the electron energy spec-
trum in disordered systems is the existence of a
mobility edge E„which separates extended and

localized states. At low temperatures the elec-
tronic transport in such systems crucially de-
pends on the position of the Fermi level E F. For
E,»E, (weak scattering, or classical transport
regime) an electron wave packet diffuses essen-
tially as a classical particle. On the other hand,
for F.F close to E, quantum interference effects
are strong; they lead to long-range correlations
in the system and, for EF &E„ to a complete
localization of the electron eigenstates. When F F

approaches E, from above, the zero-temperature
dc conductivity approaches zero as

4E.)-(EF-E )'

which defines the conductivity exponent t. Scaling
arguments, supplemented by perturbation calcu-
lations in the weak-scattering regime, ' ' led to a
conclusion that this metal-insulator transition
(the Anderson transition) occurs only at dimen-
sionality d&2 (for d ~2 all the eigenstates in a
disordered system are localized). For d = 2+ e,
with e -0, the conductivity exponent t - 1."

The purpose of this Letter is to study the Ander-
son transition on a Cayley tree (Bethe lattice),
which is a. branching graph without loops (Fig. 1).
Such a graph is believed to represent a space of
infinite dimensionality, ' and thus a transition with
"mean field" exponents is expected. The exis-
tence of an Anderson transition on a Cayley tree
has been established long ago. ' However, con-
ductivity studies, as far as I know, have been
limited to a calculation, ' based on Kubo's formula,
for a tight-binding Anderson model. ' The authors
of Ref. 8 find a minimum metallic conductivity at
the transition, in contrast with Eq. (1). Below I
develop an analytic approach to the problem and

find a continuous metal-insulator transition.
The approach is based on a scattering (S matrix)

formalism, which has been successfully used in

recent scaling studies of quantum transport. ""
In this formalism one consideres a large number
of "black boxes"- acatterers .itted together. A

scatterer is supposed to represent a region of the
disordered medium and it is characterized by a
random 8 matrix chosen from some statistical
distribution. In a scaling theory one combines
several scatterers into a single, renormalized,
scatterer, and tries to calculate the distribution
for the renormalized S matrix. The S matrix of
a "box" is then related to the observable trans-
port properties such as the resistance. In par-
ticular it is by this approach that Anderson eI,
a/. "have derived the "quantum Ohm's law" for
adding one-dimensional resistances, p, and p„
in series:

1+p = (1+p,)(1+p,), (2)

where p is the combined resistance, and all re-
sistances are measured in units vR/e'. As ex-
plained in Ref. 10, resistances in Eq. (2) are
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FIG. l. A Cayley tree of one-dimensional single-
channel scatterers (boxes). Each channel can carry
two waves propagating in opposite directions. As an

example, the waves incoming (A, D) into and outgoing
(B,C) from scatterer 2 are shown by arrows. Splitters
are shown by heavy lines.
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"typical" or "scale" resistances of the corre-
sponding distributions.

The model I consider is shown in Fig. 1. Each
box represents a one-dimensional random scat-
terer, which is characterized by a 2&2 scattering
matrix. This matrix relates the two outgoing
amplitudes to the two incoming amplitudes. For
instance, for scatterer 2

I

I I

~ l I

where r, (r, ') is the reflection amplitude on the
left (right) of the scatterer, and i, is the trans-
mission amplitude (time-reversal symmetry is
assumed). To connect one-dimensional scatter-
ers in parallel I introduce an ideal device —a
"splitter", with one channel on the left and q
channels on the right. In Fig. 1 splitters are
represented by heavy lines. In this figure q=2,
but in the following I keep q general. A splitter
is characterized by a (nonrandom) S matrix

(4)

Here zero means that there is no reflection in
the single channel on the left. I; is a row matrix
describing transmission from any of the q chan-
nels on the right to the channel on the left. As-
suming for simplicity the same transmission
amplitude for all q channels, one has t=(l/v'q)(l,
1, ... , 1), where the factor 1/v'q insures unitarity.
Further, t is the transposed (column) matrix
describing transmission from left to right. Final-
ly, y is a qxq matrix describing reflection on
the right end of a splitter; namely, the element
r „' is the reflection amplitude from channel n
to channel m on the right. Again, assuming the
same amplitude for any pair m, n (m gn) and re-
quiring unitarity, one has r „'=& „-(1/q).

I et us now consider an array of q arbitrary
scatterers (not necessarily the "elementary" scat-
terers of Fig. 1) connected in parallel via. a split-
ter (Fig. 2). An incident (from the left) wave of

I
q

I ~
l I

FIG. 2. An array of g scatterers connected via a
splitter. 1 and ~ on left refer to the amplitudes of the
incident and reflected waves.

v„(a„, e„) = a„"].-2a„cpsg +g (6)

and calculating the characteristic function

a unit amplitude splits into q identical waves.
Each of these waves is partially reflected by the
corresponding scatterer and partially transmit-
ted to the right. The reflected waves propagate
back and are partially reflected back to the right
into various channels, etc. Solving this multiple-
scattering problem, one can calculate the total
reflection amplitude z:

r 1

q

where x„ is the reflection amplitude, from the
left, of the nth scatterer.

r„=a„exp(i8„) and r =-ae' are random complex
variables. The problem is to calculate the dis-
tribution E(a, 0) for the variable r from the dis-
tributions f(a„, 9) for the variables r„(the same
distribution for all r„ is assumed). This is a
standard problem in probability theory, which is
best solved by writing r„/(1 —r„)=u„+iv„, i.e.,

cos 6I„—a„
n n) n~ n 1 2a cosg +a 2

n n n

The probability distribution for the random variables u = (1/q) Q„u„and v =(1/q)~5„v„ is then given by

y(u, v) = (1/4w2) ) /do, dP exp[-i(au + Pv) ] [p(n, P) ]'. (6)

Finally, returning to the variables a, [I) [related to u, v by Eq. (6), with subscript n omitted], one calcu-
lates E(a, 8).

Assuming random uniformly distributed phases one can write f (a„,0) = (1/2z)q) (a„). For a„«1, the
r„(and r) terms in denominators of Eq. (5) can be neglected, and the problem reduces to the well-
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known problem of a random walk in a plane. " I
will not discuss this case, but rather consider the
opposite case, 1 —a„= e„/2 «1, which is the rele-
vant case for the study of the Anderson transition.
The reflection coefficients 8„—= a„' of the q scat-
terers in Fig. 2 are, in this case, close to unity
and are distributed according to some (narrow)
distribution with an average R =(a„')= 1 —(e„)
= 1 —e. The small parameter e enables one to
perform explicitly the outlined calculation [Eqs.
(6)-(8)] and to obtain, in powers of e, the (aver-
age) reflection coefficient R =(a') —= 1 —e of the
whole array. To leading order in e the result
is simply c=qe+O(e'). This relation can be re-
written in terms of resistances by means of the
I andauer formula"'" p=R/(1-R), which relates
the (dimensionless) resistance p of a scatterer to
its reflection coefficient R. Since e, e «1, one has

p=(p/q)+o(1), (9)

1. +p„=(1+p,)[1+(I/q) p~, +O(1)].

It follows from this recursion equation that p„
=q —1 is the critical value of the parameter p,:
For po & pp pp increases exponentially with
whe n N - ~ (insulating be havior); for p, &p„,
Eq. (1O), for N - ~, has a finite nonzero solution

i.e., (for q&1), there is a metal-insulator transi-

where p is a typical resistance of a scatterer in
Fig. 2, while p is the resistance of the whole ar-
ray.

Let us now return to the Cayley tree in Fig. 1.
All the elementary resistances 1, 2, 3, etc. , are
chosen from the same distribution, with a typical
resistance p„and are uncorrelated with each
other. I denote by p~ the resistance of a tree of N
generations (scatterer 1 represents the first gen-
eration, scatterers 2, 3 represent the second gen-
eration, etc.). p~ is defined as the resistance be-
tween the initial point 0 and an electrode connect-
ing all the scatterers of Nth generation. Clearly,
p„can be viewed as two resistances in series:
the first (elementary) resistance p, and the rest
of the tree, starting from point M. But the rest
of the tree has a structure of the type shown in
Fig. 2, i.e., q resistances in parallel connected
via a splitter, where each of these q resistances
corresponds to a tree of (E —1) generations.
Thus assuming that p„and p„, are large, i.e.,
the system is close to the metal-insulator tran-
sition, and combining Eqs. (2) and (9), one ob-
tains

tion at po, .
In order to compare the results with those of

real lattices, one needs the resistivity, or con-
ductivity, rather than the resistance p . A
meaningful definition of the conductivity on a
Cayley tree is not a trivial question, which, in
the context of the classical percolation transition,
has been discussed in Ref. 6. There one distin-
guishes between the "microscopic" conductivity
o',, (proportional to 1/p ) and the physically
interesting "macroscopic" conductivity v
(proportional to the average current flowing
through an elementary resistance in the presence
of a unit electric field). Far from the percola-
tion threshold 0, and v, differ just by a num-
erical factor, while near threshold, because of
the complicated nature of a conducting path v
» v, . Since no percolationlike phenomena are
expected in the present problem (the distribution
of the elementary resistances is a well-behaved
distribution, with a typical value p„rather than
a binary distribution of the percolation problem),
I believe that o, and o, should be roughly the
same. It follows then from Eq. (11) that the con-
ductivity exponent [Eq. (1)] is t=1. This is a
somewhat surprising result since, as has been
mentioned, t approaches unity also near the low-
er critical dimensionality d = 2 (the Cayley tree,
however, represents an infinite dimensionality).

In summary, an 8-matrix approach to the con-
ductivity problem on a Cayley tree has been de-
veloped. It is demonstrated that the ("micro-
scopic") conductivity approaches zero when the
resistance of an elementary scatterer, pp ap-
proaches the value q —1 from below. The corre-
sponding exponent is equal to unity.
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Light Emission from Electron-Injector Structures
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Surface-plasmon-polariton-mediated luminescence is observed when electrons are in-
jected into thin Al films from the conduction band of SiO&. These electron-injector struc-
tures are strikingly similar to light-emitting tunnel junctions, although tunneling can be
ruled out as the driving mechanism. The emission arises from the energy relaxation of
the steady-state hot-electron distribution which exists in the metal under continuous cur-
rent injection. The same mechanism must explain much of the luminescence from tunnel
junctions.

PACS numbers: 73.40.Ns, 71.36.+c, 73.40.Qk, 78.60.Fi

Since the seminal papers of Lambe and Mc-
Carthy, "it has been widely accepted that light
emission from metal-insulator-metal (MIM) tun-
nel junctions results from a two-stage process.
First, an electron tunnels inelastically, losing
its energy to a collective excitation of the junc-
tion. Second, in the presence of surface rough-
ness, this excitation may radiate. Since the en-
ergy loss occurs in the insulating region of the
junction, '4 inelastic tunneling should most ef-
ficiently excite electromagnetic modes with large
energy density in this region. Theoretical atten-
tion ' was therefore initially focused on the "slow
wave" or junction mode, ' with fields concentrated
between the metal electrodes. However, radia-
tion from electrodes consisting of many small
metal balls' ' has been shown to be mediated by
localized plasmons. ' " More recently light emis-
sion has been demonstrated via the "fast" surface-
plasmon polariton, which has a maximum energy

density at the outer electrode surfa, ce." " To
explain the efficiency with which the fast mode is
excited, Laks and Mills" proposed a phenomeno-
logical model in which the inelastic-tunneling cur-
rent fluctuations extend into the metal electrodes
on both sides of the insulating junction. However,
the excitation efficiency appears to be much high-
er than predicted by this theory. " This and sev-
eral other puzzling results, discussed at length
in Refs. 14 and 17, have suggested the importance
of an alternative excitation mechanism, the in-
jection of hot electrons into the metal by elastic
tunneling.

If this mechanism is correct, it should not mat-
ter hose the electrons are injected, as long as
they enter the metal with energies several elec-
tronvolts in excess of the Fermi energy. Here
we report the observation of surface-plasmon-po-
lariton-mediated light emission when electrons
are injected from the conduction band of SiO, into
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