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Self-Avoiding Walks of Continuous Spatial Dimensionality
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The possibility of describing the continuous variation vn with D, where rois the shape
exponent of self-avoiding walks and D the spatial dimensionality, is investigated. A dimen-

sionality d is associated with the increase of a walk's volume with its length. The value of
d is varied at will through an extension (acceleration) of walks on all scales of length. The

shape exponent v& of such accelerated self-avoiding walks is studied with the help of com-
puter simulation. The results indicate that v& reproduces vo.

PACS numbers: 64.60.Fr, 05.40.+j, 61.40.Km

The average shape of self-avoiding walks
(SAW's) deviates from that of ideal walks as the
spatial dimensionality D decreases below D, =4.
Theoretical studies envisage a continuous varia-
tion of D, especially in connection with the ex-
pansion in a=4-D. ' Yet the actual construction
of SAW's is carried out in Euclidian space for
the integer values D=2, 3, and 4 only. This Let-
ter proposes to simulate the continuous variation
of D with the help of modified walks, which are
"accelerated" (or decelerated), on all scales of
length, so as to vary at will the volume occupied
by a walk. The construction of samples of such
walks is carried out on a computer, with the help
of a modified dimexization method. The original
dimerization method, ' proposed some time ago
for the construction of conventional (nonacceler-
ated) SAW's, will be first briefly reviewed: A

pair of "monomer" walks of Ã=2 steps is picked
at random from a sample of such walks and linked
together (also at random), to yield a "dimer"
walk of length X=4. If one-half of the dimer
intersects the other, the walk is discarded. If
not, the dimer walk N = 4 is carried over to the
next level of the construction, at which pairs of
N=4 monomers are linked together into N =8
dimer walks, which are in turn checked for self-
intersections between the two halves, etc. The
dimerization procedure provides a very efficient
method for the construction of SAW's. It also
constitutes a sort of renormalization, the linking
being repeated on an ever increasing scale. It
is this property which we shall utilize at present
for an acceleration of walks on all scales of
length. Terminology: Walks which allow self-
intersection are called ideal. The ideal walks
can be either random, or, accelerated, as de-
scribed below; similarly, SAW's also can be
either random or accelerated.

I first describe the construction of accelerated
ideal walks with the modified dimerization proce-
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FIG. 1. Dimerization 2&&4—8. The four ways of
linking are {A) with no reversal neither of X&(&& nor
of X2(~),' (B) with a reversal of X&(~), (C) with a re-
versal of X,(», and (D) with a reversal of both Xf(p)
and Xp( g) ~

dure. Thus the linking of pairs of monomers of
length N into dimers 2N is carried out not at
random, but with the help of a probability dis-
tribution depending on the mutual orientation of
the two half walks. Several schemes are possible
and the following is adopted here (see Fig. 1). Let
X;~,~

and X;&2~ denote the ith component (i = 1, . . . ,
D) of the end-to-end vectors for the first and

second monomer, respectively. - After the linkage,
the product X,(,~X,(» can be larger or smaller
than zero. One of these possibilities can be real-
ized through a translation of the origin of the
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D

V P'/VN'= II &x,. ')/&X;, 8')=2' (2)

where a dimensionality d is defined by

d=Q g,

For the random ideal walk, 0, =1 and d = D,
whence V»'/V„'=2~. This indicates an impor-
tant advantage: suppose that we wish to study the
continuous variation of V»'/V~'. In the random
case this would require us to define walks in a
space of noninteger D. In the accelerated case,
however, walks are still defined in the Euclidian
space of integer D and the continuous variation of
V»'/V~' is effected through varying d.

We now turn to SAW's. The first stage of a
dimerization N -2N involves the linking of mono-
mers into dimers; at the second stage dimers in
which one half intersects the other are eliminated.
A ratio of volumes V»'*/V~' = g, =, D &X,. »'*) /
(X; „') is defined for the first stage, i.e., (X; ~)
and V~' refer to SAW's of length N but (X; »'*)
and V,~'* refer to dimers of length 2N prior to
the elimination. Incidentally, the square of the
length after the elimination (X, »') is clearly

second half to the end of the first half. The other
possibility can be realized by reversing X;&,~

into —.X,.~» through taking the mirror image of
the second half in the D —1 "plane" perpendicular
to i. This is followed by the translation of the
origin of the second half to the end of the first.
A lottery with probabilities g,. and 1-g; for X;(,)

xX,.&, ~
&0 and &0, respectively, determines which

of the two possibilities is accepted. If X,&, &X,.&, ~

=0 we take g, =0.5 since the linking is immaterial
for acceleration. A sequence of lotteries for i
=1, . . . , D determines one out of the 2 possible
choices. The probability distribution g,. need not
be equal for different i. Let (X; „') and (X; »')
denote the average square of the ith component on
the sample of the monomer and dimer walks, re-
spectively. An expansion coefficient 0,. is defined
by

2'=&x, ,„')/&x, ,
'). (1)

Random linking with g;=0.5 gives 2 '=((X;&»')
+ (X,.~, ~') )/&X,. ~') = 2, or 6, = 1. Clearly g, & 0.5

and g; & 0.5 lead to 6), &1 and 0, &1, respectively.
Repeated dimerization N -2N, 2N-4N, etc. ,
with the help of a given distribution g, , should
lead to a uniformly accelerated ideal walk de-
scribed by constant 8, , so that (X, „')-N '. I
focus on the increase of the accelerated walk's
volume upon doubling the length:

V */V ~=2~
2N N (2')

just like for the accelerated ideal walk. The
elimination of non-self-avoiding dimers at the
second stage and repetition 2N-4N, etc. , with
given g;, produces then a uniformly accelerated
SAW described by constant 0; [Eqs. (1'), (2')
and (3)]—in brief, an "accelerated SAW of di-
mensionality d."

In the study of the conventional random SAW's
the property investigated is the critical exponent
in the scaling law (X; „')-N'"&. A decrease of
D decreases V»'*/V„' enhancing the walk's back-
bending and making self -intersection more likely
on all scales of length. In the critical region D
&4 this causes vD to deviate increasingly from
the ideal v~= —,'. In accelerated SAW's V»'*/V„'
and the back-bending on all scales of length are
controlled by d. The dependence of v„on d in
the accelerated SAW's might therefore reproduce
accurately the continuous dependence of vD on D
in the random SAW's. To formalize this hypo-
thesis I define a unique exponent v„ for an accel-
erated SAW of dimensionality d,

(X „')-N'" '; for all i=1, . . . , D.
If we can verify the existence of such an exponent
v„dependent on d but independent of the particu-
lar combination p,.=,~ 0; =d and of D [Eq. (3)],
then d indeed constitutes a meaningful dimension-
ality determining the universality class of the
accelerated SAW's. Furthermore, one particular
combination is 8, = 1 for all i, giving d = D and
corresponding therefore to the conventional ran-
dom SAW. Fulfillment of Eq. (4) would ensure
therefore that for equal integer values of d and
D, v„of an accelerated SAW is equal to vD of
the random SAW. But if the equality is estab-
lished for d=D=2, 3, and 4, there is no special
reason for it to break down at intermediate d = D.
Both requirements will be tested. For example,

larger than (X; »'*). If the linking is carried
out at random, like with the original dimeriza-
tion method, (X; » *)/(X; „')= 2 and V»'*/V~'
= 2, precisely like for the random ideal walk.
The elimination of non-self-avoiding dimers at
the second state and repetition 2N -4N, etc. ,
produces then a random SAW. However, if the
linking is carried out with the help of the dis-
tribution g, , viz. , with the modified dimerization
method, then at the first stage

&x '*)/(x ') = 2'~ (1)
and
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the value d =3 can be realized with isotropically
decelerated walks in D=4, having 0, = 02 03 04
= 4, or, with decelerated walks flattened in one
direction only having 0, =0 and 02 03 04 1; or,
with isotropically accelerated walks in D=2,
having 0, = 0, = 2. For all these cases we expect
the same value of v„and furthermore we expect
that vg v D 3 0.59.' I note that d should not be
confused with the fractal or Hausdorff dimension-
ality' D: In view of X~-N', for SAW's D=v ';
one might say that d relates to the cause, D to
the effect.

Samples of accelerated SAW's on hypercubic
lattices of D=2, 3, and 4 were dimerized up to N
=2"=16384. Sample size was halved at each
level, last size being only about 200. However,
0; and 0, v„values have been computed over inter-
nal lengths N«N, which of course are more
numerous. 0;v„values have been computed from
logarithmic plots [Eg. (4)], which were linear in
the range 8~N ~N/50. The combined error of 9,
and 9,. v, was between +2/~ and about +4/c, main
sources of error being statistical scatter and un-
attained convergence with increasing N, both
most pronounced for 9, far from unity. For that
reason 0, was limited to ~3 - 0; -, . The results
are summarized in Fig. 2. On the whole the basic
hypothesis of Eq. (4) is supported to within experi-
mental error. Most important support is provid-
ed by the approximate reproduction of v~-, =0.75
(Ref. 5) with decelerated SAW's of D =3, and of
v D 3

~ 0.59,' with both dece ler ate d SAW' s of D = 4
and accelerated SAW's of D =2. The mutual agree-
ment of v„of accelerated and decelerated SAW's
in the entire range, for noninteger values of d,
also supports the hypothesis. Still as 0; become
appreciably different from 1, there appears to be
a systematic tendency for the accelerated SAW's
to give a too low value except near to D=4 and
for the decelerated SAW's to give a too high value.
Possibly the control of the back-bending of walks
with the help of g, becomes inadequate: The de-
viation of SAW's in the sample from the average
value of 9; and even the inhomogeneity inside in-
dividual walks become too great. If that is the
case, the employment of an alternative procedure
of acceleration might improve the agreement for
9,. far away from l. Another difficulty arises
near D =4. Extrapolation to N becomes inade-
quate in the range of N studied while the use of
corrections to scaling seemed unjustified given
the scatter of the Monte Carlo results. Thus
even the conventional random SAW of D =4 extra-
polates to v~ 4 =0.53, considerably above the ex-
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FIG. 2. vg, the shape exponent of accelerated SA%'S,
as a function of dimensionality d. Open circles, open
squares, and open triangles describe isotropic acceler-
ation (deceleration) of walks of Euclidian dimensional-
ity D =2, 3, and 4, respectively; circles with slash
and square with slash describe acceleration of one
component only. Filled circle, filled square, and
filled triangle describe conventional exponents vD of
random SAV7's, of D =2, 3, and 4, respectively. Solid
line describes Flory's theory for continuous D.

pected value of —,
' (recent Monte Carlo results'

indicate a, comparable departure). For that rea-
son our v„could not be compared with the theo-
retical v, = —,

' + e/8 + ~ . (e = 4 —D). ' Incidentally,
the accuracy of the dimerization method is en-
tirely satisfacotry, ' as itself demonstrated by
the values v~-, =0.749+ 0.002 and v~, =0.595
~0.005 obtained for random SAW's, in very good
agreement with theoretical results. " Finally,
in the range 1.8 -d &4 the results agree very
closely with the generalized Flory theory v~=3/
(D+2), (see Ref. l, for example). The pro:-
nounced departure from Flory's line as d ap-
proaches 1 is quite possibly due to the aforemen-
tioned unreliability of v„ for a strong decelera-
tion.

In conclusion it appears that accelerated SAW's
permit one to study, at least to within a reason-
able approximation, the continuous dependence of
vD on D in random SAW's. Furthermore, the
accelerated ideal walk offers an intriguing geom-
etrical construction which takes us continuously
from 9 =2 (a line), via 9 =1 (random walk), to 9
=0 (a point), either through an isotropic varia-
tion, or through the flattening of particular com-
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Self-consistent electronic structure calculations are reported for Al at two interstitia1
locations in silicon. On the basis of these calculations, a novel mechanism for enhanced
interstitial migration is proposed in which electron capture can cause a barrier lowering
appreciably greater than F&, the energy gap. The model and the present numerical results
are in good agreement with recent measurements by Troxell et al.
PACS numbers: 66.30.Jt, 71.55.Fr

The migration of interstitial atoms in semi-
conductors is a long-standing problem. ' ' In
particular, the phenomenon of recombination-
enhanced migration has been recognized as an
important feature of defect reactions and device
degradation. Detailed experimental measur e-
ments of enhanced diffusion exist for some sys-
tems, e.g. , the aluminum interstitial in silicon,
and qualitative models for understanding the
process have been proposed and discussed.
Nevertheless, a basic understanding of the migra-
tion process and the detailed role played by the
capture of the carriers is still lacking. The pres-
ent calculations provide additional theoretical in-

!
sight into these questions.

These calculations are the first, to our knowl-
edge, in which the change in the barrier against
migration is calculated. We can obtain the change
in barrier height by inspecting the change in
transition-state eigenvalues, even without a full
calculation of the total energy, for the following
reason: Recall that E~, the total energy of the
defect system, depends on Q, the configuration
of the system, and one, the number of electrons
residing on the defect. If Q, designates the equi-
librium configuration of the defect for both charge
states N =N, and N =N„and if Q, designates the
saddle-point configuration of the system, then the
barrier against migration in charge state N is
V~(N) =Er(Q„N) -Er(Q„N). The change in bar-
rier height is

«~ -=V (N, ) - V (N, )=I.E,(Q„N,) -E,(Q„N,)) —[E,(Q„N, ) E,(Q N ))

=~E.(Q„N,) E,(Q„N, )) —l-E, (Q„N,) -E,(Q„N,)).
Recall also that the one-electron keels of the
system are given by the differences in total ener-
gy caused by the addition of a single electron at
some fixed configuration: eo(N+ 1/N) = Er(Q, N
+ 1) —Er(Q, N). Thus

8= 82-1
Er(Q, N ) -E (Q, N, ) = Q eg(N+1/N)

and the change in barrier height is given by the
sum from N, to N, over occupied levels at Q„
minus a similar sum at Q = Q, . The electron lev-
el eo(N+ 1/N) is, within local density theory,
approximately the Slater transition-state eigen-
value, calculated at configuration Q and occupa-
tion Ã+ &. Calculating the barrier height itself
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