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It is proposed that one should admit in the path integral for the quantized gravitational
field only those space-times for which the final three-geometry is located in the future of
the initial one. As a consequence, and unlike the situation for the Yang-Mills field, the
resulting causal amplitude is not annihilated by all the gauge (surface deformation) genera-
tors. In supergravity the causal amplitude turns out not to be annihilated by the local super-
symmetry generators either.

PACS numbers: 04.60.+n, 11.15.+q, 11.30.Pb

At present, a satisfactory quantum theory of
gravitation does not exist. However, one can
nevertheless ascertain some general features
which, one believes, will be incorporated in the
yet to be found complete scheme.

One such feature is the fact that space-time
understood as a pseudo-Riemannian manifold is
a purely classical concept and, as such, disap-
pears upon passing to the quantum theory. Indeed,
as forcefully emphasized by Wheeler, ' space-time
is the classical history of three-dimensional
space and it is in this respect the analog of the
world line of a particle.

Since there is no space-time when the gravita-
tional field is quantized there is in particular no
notion of time, and it would seem that there is
no place either for the concept of causality.

However, a closer analysis reveals that in spite
of the above remarks one can and, we believe,
must, incorporate the notion of causality at a
basic level in the quantum theory of the gravita-
tional field. Furthermore, as we will see below,
taking causality into account has definite conse-
quences, among them one which is perhaps sur-
prising, namely, that in a precise sense an im-
portant part of the gauge freedom of the classical

theory does not persist in the quantum theory. In
this respect the quantum theory of gravitation ap-
pears to be quite different from that of the Yang-
Mills field.

The key point in the analysis is to recall that,
as revealed by the path-integral formulation of
quantum mechanics, the reason for the fading
away of the classical history is the fact that the
quantum mechanical propagation amplitude is
"made" out of many histories and not just out of
the classical one. From this point of view a
history is a more elementary concept than that of
a quantum mechanical amplitude.

This observation suggests that the notion of
causality should be incorporated at the level of
the individual histories prior to folding those
histories into the quantum amplitude by means of
the path integral. The reason far this proposal
is the fact that each individual history has a
pseudo-Riemannian structure and, with it, a
light cone and a notion of past and future.

To proceed with the analysis it is necessary to
write down the action integral for the gravitation-
al field. In doing so we will assume for simplic-
ity that the three-dimensional space is compact.
The analysis and conclusions remain, however,
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valid for the open asymptotically flat case, on
which some special comments will be made at
the end.

The gravitational field action in Hamiltonian
form reads,

S= fdtdx(w'»g, » -A~K„).
Here g,.„(x, t) is the metric of the spacelike sur-
face of constant t and m'~ is its canonically con-
jugate momentum. . The functions N ~ = (N', N')
describe the deformation that connects the sur-
face of time t with that of time t+ 6t. Here X' is
the usual "shift vector, "whereas N is equal to
[det(g, ,)] ' ' times the usual "lapse function. "
The surface deformation generators K„=(X„R,. )
are constructed from the g,.~ and the m'~.

A fundamental property of the action (1) is its
invariance under the transformation defined by

5F=[E, fe"X„dx], (2)

where I is either g, , or m", together with an ac-
companying transformation law for N". (See
Ref. 2 and bibliography therein. ) Such a trans-
formation is called a gauge transformation be-
cause the e~ are arbitrary functions of space and
time. It may be thought of as the Hamiltonian ver-
sion of an infinitesimal change of space-time co-
ordinates, induced by a vector field with normal
and tangential components e, e'.

From (2) one learns that the R„are the gener-
ators of gauge transformations. They also play
the role of a "many-time" Hamiltonian since
JN"K„ is the Pamiltonian in (1). This is not sur-
pl lslng slIlce ln a generally covariant theory both
time evolution and gauge transformations corre-
spond to localized space-time displacements.

Einstein's equations are the conditions for the
action (1) to have an extremum under variations
of g... m", and Ã", for which the spatial metric
g,.&

is fixed at t, and t, up to a change of coordi-
nates. In other words, what is kept fixed in the
action principle are the initial and final three-
geometries G„G,. Upon passing to the quantum
theory G, and G, become the arguments of the
propagation amplitude, which is obtained by sum-
ming the exponential of i times the action (1) over
histories (space-times) that interpolate between
both three-geometries.

The amplitude turns out to have the simple rep-
resentation'

X[G„G,]

=JD[f]D[T'] (2 )exp[- iJT'X,"'dx]if (1)). (3)

The meaning of the quantities appearing in (3) is
the following: The generator SC~' differs from
the classical one appearing in (1) by the addition
of a ghost contribution K~g""' of purely quantum
mechanical nature. The states ~l) and ~2) are
eigenstates of the metric field g,-,. with eigenval-
ues g, , (l) and g,, (2), respectively, and of the
anticommuting ghost fields which enter into X;~g""'
with eigenvalue zero. The symbol f(1) means
that g, (1) undergoes a change of spatial coordi-
nates by the diffeomorphism x-f(x) and the no-
tation D[f] represents the invariant measure over
the diffeomorphism group. The measure D[T ]
is given by the infinite product of d T'(x)/T (x)
over all points of space.

The function T'(x) is a measure of the total
pointwise proper time separation between the in-
itial and final three-geometries. More precisely,
for each history contributing to the path integral
one slices through the region between G, and G,
by a family of intermediate surfaces determined
by the "proper time gauge conditions, "X~ = 0, N'
= 0, a set of relations which also fix the spatial
coordinate system throughout relative to that on
the initial surface. %ith this construction one
has T (x) =(t, —t, )N (x).

The path integration is first performed over all
histories with a given T (x) and with a fixed co-
ordinate system on the final surface. This yields
the matrix element in the integrand of (3) prior to
the action of f on g, , (1). Then one sums over all
(permissible) locations of the final surface rela-
tive to the initial one, which gives the integral
over T'(x) in (3). Finally one averages over all
possi. ble choices of the coordinate system on the
final surface relative to that on the initial one.
This gives the integration over f in (3).

The representation (3) permits one to imple-
ment the requirement of causality by demanding
that not all histories having G, and G, as its
boundaries should contribute to the path integral.
Rather, one demands that only those history'. es
for zohich Gz lies in the future of G, should be
admitted. This restriction may be incorporated
directly into the amplitude (3) by restricting the
range of integration over T (x), to include posi
tive proper times only. Note that one requires
that the final surface be seholly in the future of
the initial one [T'(x) positive for every x]. Thus,
in particular, the two surfaces are not allowed
to intersect each other.

Now, consider the action of the generator K,. of
tangential deformations (spatial reparametriza-
tions), understood as quantum field operator, on
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the amplitude K,[G„G,] obtained by only includ-
ing positive proper times in (3). That is, let X,.
act on K,[G„G,] considered as a, wave functional
in g, , (l), for fixed g, , (2) [the same analysis may
be performed on g,, (2)]. One obtains

X, (x)(1)K,[G„G,] = O. (4)

X„(x)(1)~[G„G,] =O (6)

for all four values of p..
The preceding discussion has a close analog in

the quantum mechanics of a relativistic scalar
particle in an external field (positron theory, '
with the spin degrees of freedom omitted). In the
parallel, the analog of the three-geometry G is
the space-time position x". The space coordinates
x of the gravitational problem have no counter-
part since the particle has zero space dimensions.
So there is only one gauge generator which takes
the form X=P'+m'+ y(x). The equation corre-
sponding to (3) is the proper-time representation
which expresses the Feynman propagator K,(x„

Equation (4) follows from the fact that the group
average over changes of the spatial coordinates
renders E, invariant under reparametrizations
in both g, , (1) and g, , (2). (Thus the notation
K,[G„G,] is justified. ) On account of (4) one
says that the quantum mechanical amplitude is
invariant under tangential def ormations.

However, the situation with respect to 3C~ is
different. Indeed, one finds

X,(x)(1)K,[G„G,] ~O,

which shows that the amplitude is not invariant
under normal deformations.

The reason for the lack of equality in (5) is the
restriction to positive T (x) in (3). That restric-
tion means that, as required by the principle of
causality, one integrates only over half of the
possible locations of the final surface relative to
the initial one. Or, in group-theoretical language,
one averages the amplitude over only half of the
space of possible deformations of the initial sur-
face. This incomplete average makes the result
not invariant under the action of the correspond-
ing generator K~.

It is important to emphasize that it is the do-
main of integration over T in (3) rather than the
measure of integration which is responsible for
(5). Indeed one may define a different noncausal,
amplitude by extending the range of integration in
(3) to cover all possible normal deformations,
—~ & T &+ ~. That amplitude, which will be de-
noted by 6, may be shown to satisfy

x„) as an integral from T=O to T=+ ~ of the ma-
trix element (x, )exp(- i TX) ~x,). That propagator
obeys

X(1)K,(x„x,) = b(x„x,) vO.

Qn the other hand if in that same representation
one extends the integration from T=- ~ to T=+ ~,
one obtains a function A(x„x,) which is propor
tional to (x, ~5(X) ~x,) and hence satisfies

X(1)~(x„x,) = O.

Equation (5) has a serious consequence for the
interpretation of the theory, especially in the case
of asymptotically flat space. [The previous dis-
cussion is valid for asymptotically flat space pro-
vided the integration in (3) is performed over
functions T with fixed asymptotic behavior T
—T „', for r —~, and for diffeomorphisms f
which become a fixed element of the rotation
group at infinity. Equations (4)-(6) are under-
stood to be weighted with a testing function that
vanishes asymptotic ally. ]

Indeed, when the space is asymptotically flat,
the point of view is usually adopted that the gravi-
tational field may be treated along the same lines
as the Yang-Mills field. The group of changes of
coordinates in four dimensions which become the
identity at infinity replaces then the product of the
internal I ie group over all points of space-time.
Physically speaking this means that for an ob-
server at infinity it is irrelevant how the flat
hypersurface of constant Minkowskian time on
which he stands is continued "inside. "

However, this point of view is only tenable if
the transition amplitude itself is insensitive to the
continuation or, what is the same, if it is gauge
invariant. In Hamiltonian langauge this means
that the amplitude must be annihilated by all the
gauge generators, as indeed happens in Yang-
Mills theory.

It follows that, in asymptotically flat space, the
gravitational field could be treated as the Yang-
Mills one if the propagation amplitude were taken
to be the A[G„G,] defined above, which obeys
(6). On the other hand the approach is not tenable
if one adopts the causal amplitude K,.

In the latter case the amplitude is sensitive to
the way in which the surface is continued inside,
because one can only perform the continuation of
the final surface without wandering into the past
of the initial one, and vice versa. This limita-
tion disrupts the group structure of the four-di-
rnensional diffeomorphisms and makes K, not
gauge invariant.
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as may be directly seen from (4) and (5) and the
basic anticommutation rule, '

t.~ (x), ~ (x')], = (r'r "),&„5(x,x') (10)

On the other hand, as (10) also shows, the ampli-
tude a for supergravity obeys

It should be emphasized here that the possibil-
ity of naturally splitting the space-time diffeo-
morphism group into two halves (deformations to
the past and deformations to the future) can only
be achieved with the help of the pseudo-Rieman-
nian metric —which is used to select the normal
direction needed to define N, T'—and is not
feasible at the topological level. A similar op-
tion does not exist for an internal symmetry
group or, for that matter, for the purely tan-
gential deformations (changes of spatial coordi-
nates). Therefore the only amplitude one can
reasonably define in Yang-Mills theory is an-
nihilated by all the gauge generators. By the
same reason, in the gravitational case, both A

and E, are annihilated by X,
One may extend the above analysis to super-

gravity, whose analog in the sense of Eels. (7)
and (8) is the theory of a spin- —,

' particle. In
supergravity there appear in the exponent of the
amplitude (3) extra terms of the form f8"S„dx
where S„are the generators of localized super-
symmetry transformations and 6 (x) are the anti-
commuting analog' of the "proper time" T (x).
The causality condition T') 0 (there is no causal-
ity condition on 6~) then implies not only (5) but
also

in addition to (6). Thus in supergravity the causal
amplitude K, is not invariant under localized sup-
ersymmetry transformations whereas the non-
causal amplitude is ~ supersymmetry invariant.

Therefore, it appears that in both gravity and
supergravity one is faced with the alternative of
preserving either gauge invariance or causality.
It is the opinion of this author that one should
preserve causality. In the case of positron the-
ory' this turns out to be the correct choice ulti-
mately because only by using the Feynman prop-
agator does one obtain a unitary amplitude. (If
one replaces E, by 6 in, say, a perturbation
scheme, the resulting amplitude is not unitary. )
Whether or not a similar situation will arise for
the quantized gravitational field remains to be
seen.
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