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A generalization of the virial theorem is presented for all components of the average
stress tensor of arbitrary systems of interacting particles. Explicit expressions are
given for local-density-functional calculations and the method is tested by ab initio pseu-
dopotential calculations on silicon. Accurate determinations are made of lattice constant,
bulk moduli, second-, third-, and fourth-order elastic constants, and the internal strain
parameter &. Agreement with experiment is very good, except for &.

PACS numbers: 71.45.Nt, 62.20.Dc, 64.10.+h, 71.10.+x

In this Letter we present a general expression
for the average stress tensor in an arbitrary sys-
tem of interacting particles. We term this result
the stress theorem, since it is a generalization
of the quantum-mecha, nical virial theorem" and
since it is closely related to the force theorem
originally derived by Ehrenfest' (now often re-
ferred to as the Hellmann-Feynman theorem').
This form is used to derive an explicit, practical
expression for the stress tensor of a periodic sol-
id within the local-density-functional (I DF)
framework. The combined force and stress theo-
rems completely determine the equation of state
of the crystal, i.e. , external stresses and forces
as a function of strains and internal atomic dis-
placements. We apply the expression to silicon,
using the cb initio pseudopotential method, to de-
rive the equilibrium lattice constant and bulk
moduli from calculations of both total energy and
pressure. Elastic constants, higher-order elas-
tic constants, the internal strain parameter P,
and the TO(I") phonon frequency are derived by
applying anisotropic strains and atomic displace-
ments to the unit cell.

The stress tensor, introduced into quantum
mechanics by Schrodinger' and Pauli, ' can be de-
rived in a many-body form with a scaling proce-
dure due to Fock.' The total energy is

E...=(a,„+V,„,&=(p,.p, '/2m +V;„,+V,„,&, (I)

where i labels the particles, and V,.„, denotes gen-
eral interactions between the particles; V,„„the
external potentials; and angular brackets, the ex-
pectation value. Introducing a uniform scaling of
the particle coordinates r,. by an infinitesimal
strain tensor, r,. -r, „++ac ar;a, the desired
result follows from the variational property that
a. "stretching of the ground state'" does not change

E«, to first order. The stationarity of E«, with

respect to e~ leads to the result that the total in-
ternal stress tensor T 8, given by

T'„, = 8(e,.„,&/ee~

=-5,.(p, p, ,/m, —r, , (V„.V,„,)„&,

must be balanced by the stress due to the exter-
nal potential in order for the system to be in
equilibrium. The average stress is denoted by
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a 0 =T~/0, where 0 is the volume of the system,
and the external pressure P is —

& Q o „.Thus
Eq. (2) is a generalization of the virial theorem
expression for pressure, "and we refer to it as
the "stress theorem. " It is closely related to
the variational form of the force theorem. '4 In

periodic solids with n atoms per unit cell, the six
stress components and Sn forces given by the

stress and force theorems are necessary and suf-
ficient to determine all equilibrium conditions.

Evaluation of stress using the LDF proceeds by
first carrying out a fully self-consistent calcula-
tion of the variational electronic wave functions

g,. for any chosen structure of the solid. The
stress 0~ is an intrinsic property of the solution
which, from Eq. (2), can be expressed in recipro-
cal space (in atomic units) as'

o~ =-Z Z, ~„IC;(k+ G)I'(i +G) (k' G) a ' -'(4~K ~ Jl p(G)l'/G'](2&. &&/&'- &~)

-p Z.o~(G) ft a«I Gl)/a(G')]2G. G a + &(I G
I )&~)p(G)*

+5„,5~ g [a„,(C) —p„,(G)]p N)* —5~G' 'n, Z +g-'a(y, „„,)/a~„, .
Here (, is the wave function of the ith occupied
state, p the charge density, 8 the structure fac-
tor, 0 the unit cell volume, T/'a spherically sym-
metric local potential, yE„„d the ion-ion interac-
tions in a constant background, and o. ,Z the aver-
age non-Coulombic ion-electron interaction. ' The
expression for nonlocal potentials is straightfor-
ward but lengthy, and will be given elsewhere. '
The LDF contribution to stress is the purely di-
agonal fourth term in Eq. (3), in accordance with
the result of Janak, ' where e„and p, „are the ex-
change-correlation energy per electron and poten-
tial, respectively. Pressures have previously
been obtained by use of the virial theorem with
the linear-muffin-tin-orbital, atomic-sphere-
approximation (LMTO-ASA) method, "recasting
it as a muffin-tin-sphere surface integral. " To
our knowledge, these spherical approximations
have not permitted the evaluation of anisotropic
stresses, and the present work reports the first
such calculations.

We have performed calculations of stresses,
forces, and total energies for silicon, using the
ab initio nonlocal pseudopotential method" with
the Wigner interpolation formula for e„and p. „,.
We have used a large number of plane waves
(= 540, or kinetic energy up to = 24 Ry) and 10
special k points in the irreducible fcc Brillouin
zone, except as noted. Prom the pressure I'
evaluated using Eq. (3) at only two lattice con-
stants near equilibrium, the lattice constant a
(where P = 0) is found by linear interpolation, and
the bulk modulus B is Q~/AQ. The results are
given in Table I, where the uncertainty for a is
estimated as &0.2/p, and - 2/g for B From the.
pressure at a range of lattice constants (using
two special k points) fitted to Murna, ghan's" equ'a-
tion of state, we find the derivative aB/aP (Table
I). The agreement with experiment is very good,
-0.6%%uq for a and —5/& for other quantities. The
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TABLE I. Lattice constant a in angstroms, bulk
modulus B in megabars, and derivative BB/BP, elastic
constants in units of megabars, and internal strain
parameter f. The TO(I') phonon frequency is in tera-
hertz. Experimental values are from Refs. 18 and 23.

Calculation Experiment

a
B
BB/'dP
Ci

C12

C111

C 1 '1 11

C1112

TO(I )

5.400
0.93
4.2
1.59
0.61
0.85

-7.5
-4.8

0
32
0.53

15.64

5.431
0.992
4.15
1.675
0.650
0.801

-8.25(10)
-4.51{5)

~ ~ ~

0.73(4)
15.68(3)

present results furthermore agree almost exactly
with all-electron LMTO-ASA calculations of a
and B. '~ In contrast, if one calculates the total
energy'" "it is necessary to include a large
range of lattice constants and fit the result by an
assumed equation of state in order to deduce the
above quantities. This had lead to uncertainties
of - 10% in B and a factor of -2 in aB/aP in the
most thorough previous work. " Furthermore,
we have verified that the lower cutoff (11.5 Ry)
used in Ref. 17 leads to additional uncertainties.

The elastic constants Qyy and g» can be obtained
directly from the two independent components Oyy

and cr„=033 of the stress tensor due to a small
strain e» (see inset in Fig. 1). There are no in-
ternal strains for any magnitude of E'yy From
Hooke's law for small strains the result is that
c~~ =(Tgg/cg~ and cg2 = &22/E~~. We have carried out
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FIG. l. Stress-strain relation in silicon for large
(100) strains. We give the Lagrangian stresses I;ff and

t» in megabars, divided by the uniaxial strain q f f
(see text). The dashed line represents the linear term
in ~22/g„.

a calculation for Rye: —0.004, with the results
given in Table I. The bulk modulus B equals (c„
+2c»)/3, showing excellent internal consistency.
The shear modulus is 2(c» —c»), which previous-
ly"'" was derived from total energy differences
proportional to the square of the strain. The
present results are more accurate, and were de-
rived from much smaller strains than were need-
ed in the total energy calculations. Agreement
with experimental values" is of the order of 5%.

The elastic constant c44, which is obtained from
uniaxial compression along the [111]direction,
couples to internal strains in the unit cell. We
can obtain all harmonic quantities directly from
two independent calculations of stresses and forc-
es, a far simpler procedure than other meth-
ods."" A strain e~ = —', e~(l- 5~) and a relative
internal displacement u (1, 1, 1) gives within the
harmonic approximation a force +E(1, 1, 1) on
each atom, where

E= 4 (P—,'ae, -u)
and & is the internal strain parameter defined by
Kleinman. " The force constant C equals 2M

xw'To«&, where M is the atomic mass and cu T«&&
the frequency of the TO(I") phonon. The stress is

similarly given by v~ =cr, (1 —5~) with

0'4 =c44 E4 —0 4$4au,(0) (5)

where c«'" denotes the elastic constant that
would appear in the absence of internal displace-
ments. For a given strain c4, the internal dis-
placement u is determined by the condition that
the force E is zero, and the elastic constant c44

=o~/e~ is therefore given by c~~~'~ —0 '4'(fa/4)'
On the one hand, calculation of I' and 04 with E4
=0 and a small displacement u gives wT«~& from
Eq. (4) and & from Eq. (5). On the other hand, a
small strain ~4 and u=0 yields c44'&, c,4, and an
independent determination of &. The results are
given in Table I, with a deviation from experi-
ment of 6'%%uo for c«and less than I%%u& for &u T«r&.
The internal strain parameter P agrees reason-
ably with the less accurate calculations in Refs.
19-21, but it is -27/o below the values from inde-
pendent recent experiments. " This is a large
discrepancy which we believe is outside the limits
of the theoretical uncertainty in view of the accu-
racy obtained for every other property, including

c44 and +~« ~&. A possible explanation may be the
assumption of overlapping spherical atoms in the
analysis of the experimental data, as well as an-
harmonicity due to finite strains. Resolution of
this controversy must await further investiga-
tions.

Higher-order elastic constants are found from
the stress-strain relation at large strains. We
calculated O„and o» for eii between —0.1 and
+0.03 using two special k points. Since finite
deformations are usually described in terms of
Lagrangian stresses t~ and strains v~f24 the fol-
lowing transformations are applied for an 6'yy

7»» 2~11 fll +11/( + e») ~2 2 +22(I
+&»). In Fig. 1 we display f»/q» and t»/q» as
a function of g», which besides cyy and c» yields
several third- and fourth-order elastic constants
(Table I). The third-order constants are within
10%%u& of experimental values, whereas the fourth-
order constants have not been measured. Our
results clearly illustrate the value of direct cal-
culations of all stress components for arbitrarily
large strains, where the stress-strain relation
deviates markedly from the harmonic relations.

In conclusion, we have derived a general ex-
pression for the macroscopic stress tensor of a
system of interacting particles, termed the
stress theorem and closely connected to the virial
theorem" and the force theorem. s' We have ap-
plied this formulation to show that simultaneous
calculation of stresses, forces, and total energy
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represents a complete and practical method for
studying the structure of periodic solids. The
present LDF calculations, using ab initio pseudo-
potentials for silicon, give accurate theoretical
values for the lattice constant, elastic constants,
internal strain parameter, and nonlinear stress-
strain relations. Significant computational sav-
ings are obtained with this method compared to
direct calculations of total energy differences.
Agreement with experiment is very good, with
the notable exception of the internal strain param-
eter &.
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