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of the response function. It accounts for the
phenomena observed in systems with a potential. ly
soft mode. RPA and classical theories are very
inaccurate for such systems. Because of the
simple and general nature of the approximation
scheme in the correl. ation theory it may be con-
sidered as a generalization of the BPA with a
wide range for appl. ications.
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A scaling theory for the interacting disordered fermion problem is constructed by extend-
ing the perturbation in coupling constant to second order. A scaling hypothesis produces a
set of scaling equations which incorporates both localization and interaction. The resulting
exponents are compared with experiments and further experimental tests of the theory are
proposed.

PACS numbers: 71.30.+h, 71.50.+t, 71.55.Jv

Many disordered electronic systems undergo a
metal-to-insulator transition as the amount of
disorder is increased. In the past few years, in-
creasing evidence has accumulated that the nature
of the tra, nsition is governed by two aspects of

the problems: (i} Anderson localization, i.e.,
the behavior of a single-electron wave function in
the presence of a random potential and (ii} the in-
teraction among electrons in the presence of dis-
order. By now, a sealing theory of the Anderson-
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localization problem is well established. We can
view the development of this theory in three
stages. First, Abrahams et a~.' showed by per-
turbation theory in (~F ~) ', where T is the elastic
scattering time, that a logarithmic correction to
the conductivity exists in two dimensions (2D)

o =o,[1+(In(&/&)].

In Eq. (1) the cutoff frequency &=T ' and t
=(4&'g) ' where g =~FT/2a' is the conductance per
square per spin in 2D in units of e'/h. Next, it
was shown by Gorkov, Khmel'nitskii, and Larkin'
that the next leading term, t 'In(~/&), has van-
ishing coefficient, and consequently a scaling
theory with t as the sole sealing variable is can-
sistent. Finally, Wegner' mapped the Anderson-
localization problem to a field-theory model
whose scaling behavior can be established with
use of conventional renormalization-group meth-
ods. While the localization problem is in a satis-
factory state, it deals only with noninteracting
particles. It turns out that for electrons interact-
ing with a potential v (q) in the presence of weak
impurity scattering, i.e. , HI =~+,v(Z)p, p „p,
being the density operator, the fact that density
fluctuations are diffusive leads to singularities in
2D 4..

t

P =P,[1 +(A, —sA.,)in(&u/A)],

where I' stands for the conductivity 0, the single-
particle density of states N„or the coefficient y
of the linear T term in the specific heat, and is
the frequency or the temperature 1', whichever
is larger. In Eq. (2), s is the spin degeneracy,
A., =v(0)N»t, and A., =EA, where E is a factor
which depends on the interaction range such that
F -0 or 1 for long- or short-range (compared
with kF ) interactions. The situationfor the dy-
namically screened Coulomb interaction is more
complicated, but in this paper we shall concen-
trate on the static interaction only. Our strategy
is to extend the results of Gorkov, Khmel'nitskii,
and Larkin' to include interactions, namely we
ealeulate to order In'(&u/A) and deduce the proper
ties of the sealing theory without knowing the
underlying field theory.

It is known that the logarithmic correction in
Eq. (1) is destroyed when time-reversal symme-
try is broken, a situation which is realized ex-
perimentally by the application of a magnetic
field. ' We shall first present the results in this
limit. The spin susceptibility g for & =2 is given
by'

y/A, = 1 —A., ln(u)/A) —A,A, ln'((u/A).
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For d & 2, In(&u/&) is replaced by [(&/&) "—1]/
(&/2). For the single-particle density of states
and the conductivity, the ~ ln terms turn out to
vanish. We note that the perturbation is in powers
of ~; i.e., u andt always occur as a product.
Our next step is to &»&~e that a scaling theory
exists with ~, and ~, as the scaling variables.
Specifically, upon reducing the cutoff energy ~ to
~', we can find new variables &, ' and ~,' such
that

P(~/A, A„A,)Z~(A'/A, A„A,)

=P(~/A', A, ', A, '
). , . (4)

dA2/d InA = (~E)A2+A, 2 +2A~A2, (6)

where & =d —2. The vanishing ln' result for the
conductivity serves as a test of our scaling
hypothesis. We shall restrict our analysis to the
case of repulsive interaction, such that ~, and ~,
are both positive. Equation (6) shows that A,
scales towards weak coupling and becomes irrele-
vant. We obtain the fixed point A.,*=~/2, A.,*=0
with an eigenvalue of -c/2. Furthermore, for
any quantity that scales, we can write down the
Lie equation which requires knowing only the
linear logarithmic term':

d lno/din~ =A, —sA.„ (7)

and similarly for &, and g. Thus, at the transi-
tion we predict that both 0 and Ã, vanish like
(~/&) ' =(~/&)" "".If we are a distance &n

from the critical point (6n may be the impurity
concentration from the critical value, for in-
stance), and A, «,*, we reach the metallic limit
when the energy scale reaches &/& =(&n)", be-
yond which point the conductivity stays constant.
Thus, we predict that

o - (~/A)"' (On)'-
Interestingly, this prediction is the same as the
pure localization theory' and is characteristic of
a one-parameter sealing theory. We should men-
tion that the vanishing ln term for Ã, and the
scaling exponents have been obtained independent-
ly by Castellani et al.'

We now proceed to discuss the full problem in-
cluding the localization contributions. Technical-
ly, the tin term in Eq. (1) comes from summing
maximally crossed diagrams, and w e must now

for any physical quantity P that scales. ' By as-
suming that &, and p satisfy Eq, (4) we obtain the
scaling equations

dh, /d InA =(&e)A, —A,,'+ 4sA, A,, —(s' —s)A.,', (5)
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include such diagrams in the first-order interac-
tion-theory calculations. The results are

N, /N, 0
= 1 + (A.1

—sA.2)in(0)/A)

—t {/, —s)(.2) in2((d/A), (9)

(x/v0 =1 + (t +)(., —s)(.2) in{(d/A)

—& t(/, —sx2)ln2(0)/A), (10)

)(/X. = X/)(. + ~ «, »'(~/A). (11)

We now proceed as before except that we add
an additional scaling variable t and assume that
Ã„X, and & scale. The following sealing equa-
tions are obtained.

dh. 1/d lnA =81 —2)11t + sA.2t,

dh. 2/d lnA =A.2(& e +A, 2 + 2A., —t),
dt/d lnA =([&e -t -3(A., —s~2)],

(12)

(13)

(14)

where R, denotes the right-hand side of Eq. (5) ~

We note that the localization fixed point t *=&/2,
&,*=~,*=0 is unstable to ~. The fixed point that
controls the metal-insulator transition is the one
located at t *=~/5, A.,*=&/10, &2*=0. Further-
more, for repulsive interaction ~, always scales
towards zero. Thus, a two-parameter scaling
theor y results. The eigenvalue which character-
izes the flow away from the fixed point is found
to be —&/2.

We can again write down the Lie equation for 0,
Ã„and y:

d inc/d ln(d =t + A., —s/(, »
d lnN, /d In0) =)(,, —s)(.»
d 1n)(/d 1n(1) = —A.2.

(15)

(16)

(17)

Comparison of Eqs. (14) and (15) reveals the im-
portant fact that unlike the localization problem,
oh "does not satisfy the same scaling equation
as t '. Thus, the conductance is not the scaling
variable in the presence of interactions.

In the critical region we have

(0)/A) 1 +X1 &12"( /0))A(d3) 210/-

(0//A)(& 2)/10

Again, & is frequency or T, whichever is great-
er. Away from the critical point we have a char-
acteristic energy scale &/A -(&n)", which is the
scale at which we scale to the weak-coupling lim-
it (metal). At this stage, we ean do perturbation
theory, i.e. , we can use Eqs. (1) and (2) but with

renormalized parameters. We theref ore obtain

N, (&u) =N, (0)[1+((d/b) "], (d (A

a((0) =() (0)[1+((0/&)"2], (1) (b,
(18)

(19)

where N, (0) -(&/A)"" -(Gn)0'2 and 0 (0) -(&/A)3""
-{5n)0'. For &u &b. , the critical behavior N,- (&/A)"" and 0 -((d/A}3" 10 are restored. In gen-
eral, the behavior of other scaling quantities
whose leading logarithmic corrections are. known
(Hall constant, ' thermopower, etc. ) is determined
by similar arguments and will be discussed else-
where.

On the insulating side of the transition, scaling
is towards strong coupling. The insulating re-
gion is reached on a scale ~ =&. The dielectric
constant &, can be estimated by noting that +y
=() "/0) where o" is the imaginary part of the con-
ductivity. By the Kramers-Kronig relation, o"
-((0/A)3 "' in the critical region. Thus, we ob-
tain for the dielectric constant

(A/A)(0 ~ 36 1) (5/2)(0 ~ 6& 2)/ &

1 (20)

To the extent that we have a two-parameter
scaling theory, our general picture is similar to
that of McMillan. " Equations (18) and (19) are
generic to any scaling theory which scales to
weak coupling and mere first written down by
McMillan. However, the exponents and the rela-
tionship between exponents that we obtain are
very different. MeMillan has assumed that the
screening constant is given by E' =4re'sNy and
the conductivity is related to the diffusion con-
stant by 0 =e'sÃ, D. One of us argued elsewhere"
that in both eases N, should be replaced by dn/d p,

which contains no singularity. The erroneous use
of the density of states shows up in the relation-
ship between the exponents for the conductivity,

and the dielectric constant which disagrees
with the present work.

We now discuss some comparison with experi-
ments. Very close to the metal-insulation transi-
tion in Si:P, it is found" that on the metallic side
o -(«)0'6, while on the insulating side &1 diverges
mith about twice the exponent. The conductivity
exponent 0.5 is far from unity predicted for the
pure localization model but compares well with
0.6 obtained here. The ratio of the ~, and 0 expo-
nents is predicted to be 2 ~ if me set & =1, and the
agreement with experiments is acceptable. Our
theory also predicts that near the transition, the
conductivity should behave a,s T" for 1'(& as
shown in Eq. (19) and the coefficient of the &"2
term should diverge as («) "'-(7 "' near the
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transition. Experimentally, a I' " term was ob-
served in very metallic samples" and interpreted
according to the first-order perturbation theory,
Eq. (2). The sign indicates that &, dominates
over ~, . As the transition is approached, the
sign of the &"' term is observed to change. " We
may now understand this as the scaling of ~, to
zero. We also point out that our theory predicts
that if the conductivity is measured in the pres-
ence of a sufficiently large magnetic field (cyclo-
tron frequency large compared with &) the time-
reversal symmetry-breaking model is appropri-
ate. The observed o (&n)-" behavior should
change over to a linear behavior in the vicinity
of the transition.

It is worth mentioning that according to Eq. (17},
the spin susceptibility should grow with decreas-
ing temperature and then saturate to a constant
value when A, scales to zero. A rise in g has
been observed in Si:P on the metallic side of the
transition. ' However, on the insulating side g
diverges like & ', «1. This has been interpre-
ted as the freezing out of singlet pairs of local-
ized spins. " The relation of this behavior on the
insulating side to the present theory in the criti-
cal region remains to be clarified.

Tunneling and conductivity measur ements have
been performed on amorphous alloys such as
Au„Ge, „"and Nb„Si, „." In contrast with the
Si:P data, the conductivity in Nb„Si, „was found
to vanish linearly with concentration near the
transition. " The tunneling data were analyzed
according to Eq. (18). For ~ & &, an ~"' behav-
ior was reported, "somewhat different from the
&"we predict. A possible reason for this dis-
crepancy is that dynamic screening is important
for the density of states (in 2D we know that dy-
namic screening produces ln' corrections already
in first order'). An intriguing possible explana-
tion of the conductivity exponent is that spin-flip
scattering becomes important near the transition
and provides the time-reversal symmetry-break-
ing mechanism to convert the conductivity expo-
nent from 0.6 to 1. We have also worked out the
spin-orbit scattering case and it may serve the
same purpose.

Finally, we make several comments on the the-
ory: (i) At the fixed point A. *=O.le, t* =0.2e, we
have vÃ, =~. Thus, strictly speaking it is not
legitimate to do perturbation in &. Parts of such
corrections amount to replacing v by some Fermi-
liquid coupling constant. This also raises the
possibility of spin-dependent coupling, which we
have ignored. (ii) There exist maximally crossed
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diagram contributions to lowest order in +vt in(~/
A).""However, it has been shown" that such
terms are renormalized to zero which justifies
our ignoring them. (iii) We have also calculated
the specific heat c, =y& and obtained

y/yo =N, /W, o+ p(A. , —2sA. ,82+A, 22)]n2(T/A). (21)

The presence of the extra terms in Eq. (21) indi-
cates that A. /&, and &,/&„do not both scale, i.e.,
satisfy Eq. (4}. At first sight, our choice of N, /
+yp as the scaling quantity seems arbitrary. Here
we must be guided by some physical considera-
tion, namely N, is expected to vanish at the tran-
sition whereas y should remain finite. This is
because even on the insulating side there exist
lcnv-lying particle-hole excitations which contrib-
ute to the specific heat." This is in fact ob-
served experimentally. " The constant term
means that y does not satisfy Eq. (4), but subtrac-
tion terms analogous to those for the free energy
in critical phenomena are needed. We have fur-
ther justification for choosing ~, as the scaling
quantity because it is consistent with the scaling
of the conductivity.
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A generalization of the virial theorem is presented for all components of the average
stress tensor of arbitrary systems of interacting particles. Explicit expressions are
given for local-density-functional calculations and the method is tested by ab initio pseu-
dopotential calculations on silicon. Accurate determinations are made of lattice constant,
bulk moduli, second-, third-, and fourth-order elastic constants, and the internal strain
parameter &. Agreement with experiment is very good, except for &.

PACS numbers: 71.45.Nt, 62.20.Dc, 64.10.+h, 71.10.+x

In this Letter we present a general expression
for the average stress tensor in an arbitrary sys-
tem of interacting particles. We term this result
the stress theorem, since it is a generalization
of the quantum-mecha, nical virial theorem" and
since it is closely related to the force theorem
originally derived by Ehrenfest' (now often re-
ferred to as the Hellmann-Feynman theorem').
This form is used to derive an explicit, practical
expression for the stress tensor of a periodic sol-
id within the local-density-functional (I DF)
framework. The combined force and stress theo-
rems completely determine the equation of state
of the crystal, i.e. , external stresses and forces
as a function of strains and internal atomic dis-
placements. We apply the expression to silicon,
using the cb initio pseudopotential method, to de-
rive the equilibrium lattice constant and bulk
moduli from calculations of both total energy and
pressure. Elastic constants, higher-order elas-
tic constants, the internal strain parameter P,
and the TO(I") phonon frequency are derived by
applying anisotropic strains and atomic displace-
ments to the unit cell.

The stress tensor, introduced into quantum
mechanics by Schrodinger' and Pauli, ' can be de-
rived in a many-body form with a scaling proce-
dure due to Fock.' The total energy is

E...=(a,„+V,„,&=(p,.p, '/2m +V;„,+V,„,&, (I)

where i labels the particles, and V,.„, denotes gen-
eral interactions between the particles; V,„„the
external potentials; and angular brackets, the ex-
pectation value. Introducing a uniform scaling of
the particle coordinates r,. by an infinitesimal
strain tensor, r,. -r, „++ac ar;a, the desired
result follows from the variational property that
a. "stretching of the ground state'" does not change

E«, to first order. The stationarity of E«, with

respect to e~ leads to the result that the total in-
ternal stress tensor T 8, given by

T'„, = 8(e,.„,&/ee~

=-5,.(p, p, ,/m, —r, , (V„.V,„,)„&,

must be balanced by the stress due to the exter-
nal potential in order for the system to be in
equilibrium. The average stress is denoted by
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