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A self-consistent theory for static and dynamic properties of planar magnets including
quantum and correlation effects is presented. The renormalization and damping of the
potentially soft mode is calculated. A central peak absorbing the spectral weight near
the transition temperature is found. Qualitative agreement is obtained with observations
made on Pr, which approximately represents a singlet-doublet model. The correlation
theory is a systematic generalization of the random-phase approximation with an equally
wide range of applicability.

PACS number s: 75,40.Fa, 05.40.+ j, 75.10.Jm

, Planar magnets constitute a class of systems
with a wide range of interesting physics very djLf-

ferent from the isotropic Heisenberg magnets.
This is a consequence of the competition between
the planar anisotropy (D), which favors the non-
magnetic singlet ground state, and the exchange
interaction (J,) which favors al.ignment of spins
in the plane. The outcome depends on the lattice
dimension (d) with substantial. implications for
the phase diagram. As the ordering temperature
(T, ) or the critical, ratio (R =D/2J, ) is approached
from above, differentl. y oriented ordered clusters
are building up on the background of the singlet
ground-state matrix. The conventional exciton
theory in the random-phase approximation (RPA)'
is considering the creation of independent spins
in the matrix and is therefore not capable of de-
scribing the short-range correl. ation. We will.
here show that the correl. ation effects in a simple
way can be included using the correl. ation theory,
which was successfully applied to the Heisenberg
magnets EuO and EuS for T)T, .' The theory
represents a systematic general. ization of the
RPA theory for several dynamical variables
(here two) and has as such a much wider applica-
bil. ity than presently discussed. The inclusion of
correlations has two important effects for the
transverse susceptibility X""(q, cu): firstly giving
damping and renormal. ization of the RPA excitonic
modes and secondly producing a central peak
(CP) representing spin diffusion of the correlated
regions. This holds for both the singl. et-singl. et
and singl. et-doublet models for which the RPA
only gives the excitonic mode. However, a low-
frequency response was observed in Pr, ' which
had a broad maximum as a function of wave vec-
tor at the minimum of the exciton branch. The
intensity varies with temperature and pressure. '
It has not previously been satisfactorily ex-
plained. Pr at zero pressure is well approxi-
mated by the singlet-doub1. et model' and it is sug-

gested that the observed CP largely is due to the
presently discussed correlation effect. This was
not included in previous theoretical treatments
of planar magnets, ' Using a Landau functional
approach for the related transverse Ising model,
Klenin and Hertz' found evidence for a CP, but
they were forced to make severe approximations
which prevented realistic results to be obtained.
There are several planar magnets representing
different lattice dimensions and ratios, for ex
ample, P. r (d = 3, R = 0.93),"Rb Cr C1, (d = 2, R
= 0.005),' CsFeCI, (d = 1, R = 1~ 07).' Pr has a
nearly critical ratio and is presumably therefore
the only material in which both the excitonic and
a central. mode have so far been observed. How-
ever, the ratio R may be varied by application of
external pressure or field and the present the-
oretical predictions may be tested in other, per-
haps more ideal singlet-doublet (or singlet-
singlet) systems, for example, CsFeCI,

The planar magnets are described by the Ham-
iltonian

II= ——,Q, Z, S, S, +DQ, S, ' .

The exchange interaction J, equals J,y, and for
nearest-neighbor interaction y, =+~ exp(iqR)/p,
where p is the number of neighbors. For D& 0
and an effective 8 =1 the single-ion ground state
i 1) is a singlet with a. doubl. et

i 2) and
i 3) at the

energy D. With standard basis operators a~„
=i p) (ni for calculating the dynamical response
function X" (q, &u) one can show that y""(q, tu) and
X"(q, v) are uncoupled in zero magnetic field.
However, S," =a»'+a»' is coupled to the quad-
rupolar-type operator l., " = (S'S'+S'S'), =i(a„'
—a»'). The corresponding response function
may be measured by sound-wave measurements;
it must be included in the cal.culation of 1i""(q,~),
which can be measured by neutron scattering.
The formal solution to the problem for two oper-
ators S and L considered as a vector A. was given
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(2)

where

(A1B), = J die "f dx((A(t —ix)B& —(A, & (B&),

P = 1/k&T and X is the static susceptibility matrix.
The moment matrices (u&& and (~'&, the correla-.
tion matrix (AA t&, and the dynamical response
matrix X(q, v) can be self-consistently calculated
by exact relations from (2).

The essential problem is to find an approximate
solution for the random-force relaxation matrix
&p(z). It was recently found for the case of one
dynamical variable 8, ' that a two-pol. e approxima-
tion' for X"(q, v) (&v=+0+ii') yields an exhaus-
tive and accurate description for static and dy-
namic properties for T &1.02T, for the Heisen-
berg magnets EuO and EuS. It corresponds to
including d'/dt' in the Ginzburg-I andau equation,

The excess second moments, which give the deviation from the RPA result, are given exactly by

~„'=(~.-~, )x, "" N 'Z, y, (&s, 's „'&+&s,'s, '&j,

b, 222= J'g)Q 'N 'Q«y«(4(S« "S „"&+(S«S „&—(L„, L, „&+(S«'S „'& —(L«, 'L, «'&}.

which has been used extensively in the problem

(AIA'). =X[ —
& & c()(( '&-( &')1 ' of structural phase transitions. " In the present

theory it corresponds to the assumption of a
Lorentzian decay in the frequency range of inter-
est for the random force, or y(z)=(z+21') ',
where I' is cal.culated self-consistently by a
mode-mode decoupl. ing of p(z). The same ap-
proach can be used here for X"(q, u&). However,
for planar magnets it is x""(q,~) which is of most
interest. With two dynamical. variabl. es the anal-
ogous approximation is y»(z) = (z+ 2K, )

' and

y»(z) = (z+ 2K,) '. If we simplify further by in-
troducing only one parameter K, =K, -K» it
turns out that K, can be determined without de-
couplings approximately from the exact (e, '&""

in this case. Because of the matrix nature of the
problem (2) there are four complex poles (+ 0, ,
iI', ) and (+e, , i5, ) in two groups for X""(q,&u).

When the groups are separate the spectrum (2)
for X""(q, &u) is well approximated by a weighted
sum of two normalized two-pole functions,

X (qx )=Xa
& )

( )(+2 II 2 I 2)2+4+21 2 (~2 p a p 2)2+4~2' 2 (3)

In terms of the HPA frequency &u, = iD(D —J,Q))'~' and the matrix elements 4»' and b, »2 of (tu'& —(v&'
one finds, when b» and K, are small, the following simple expressions for the parameters in (3):

(4)

By inspection we notice that ~»'- 0 for q - 0 and
at T, when X, '"-~ at the ordering vector q„. on
the other hand ~»' is large in particular near T,
and is essentially proportional to ratio of the cor-
relations (S,"S~"&/(S,"S,"& on different and on the
same site, since' Q = 2((S„'&—(S, '&). At the transi-
tion temperature T, the RPA frequency co, -0.
However, the coupling between S," and I-," com-
pletel. y changes the dynamical behavior rel.ative
to the picture obtained by the RPA approximation.
The excitonic mode at 0, does not go soft, but
loses all its spectral weight to the central peak at
T, , since 0, '-4»' and P - 1. For large tem-
peratures b, »' approaches 4J,'(1-y, )/Sp, i.e. ,
the second moment for the pure Heisenberg sys-
tem. For D-O the coupling between S," and I,"
vanishes and the theory reduces to that used for
EuO '

The physical interpretation of the result is that
correlated clusters of spins in the pl. ane are
building up near T, in the singlet ground-state

matrix. The dynamical behavior of these gives
a central peak. The half-width of that is found to
be proportional to q' at T, indicating diffusional
behavior. The width of the central peak vanishes
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FIG. 1. The calculated (Ref. 11) transition tempera-
tures T as a function of D/&0 for d=3 and 1 compared
with the mean-field theory (MF) and the classical ap-
proximation &SS) = k?'X. The high-temperature-expan-
sion T for d=3 and 2 are indicated by T + and 7',
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FIG. 2. The calculated y~~(qp, (u) for d=3 showing a
central peak and an excitonic mode as a function of de-
creasing & = [B(D-J Q)] ' for equidistant values of

Cp ep
D. The foremost spectrum is calculated for parame-
ters corresponding to Pr at T =5 K. All spectra are
normalized to the same area.

at T, indicating normal critical slowing down. A

qualitatively similar, but less explicit, resul. t is
emerging from the Landau functional approach,
in which the central. peak can be understood as
coming from X"(q, ~), which is locally coupled
to y"" (q, e) by the local molecular field in the
correlated regions. However, because of too
severe approximations Klenin and Hertz' under-
estimate the weight of the CP by neglecting the
dispersion effects.

The introduction of the pair correlation effects
in the renormalization factors Q, 6»', and 6»'
yields clearly a dependence on the lattice dimen-
sional. ity.

Self-consistent numerical calculations" were
performed for d = 3 fcc, d = 2 square, and d = 1
lattices. The phase diagram is shown in Fig. 1
as a function of the ratio R = D/2J', . For d = 3
there is no order above the critical ratio R f„"'
= 0.901. This may be compared with the high-
temperature series expansion (HTE), R q„
=0.858." For D=0 one finds T, "'=0.499 in
agreement with HTE." T, increases init. ial. ly
with increasing D as expected on the basis of the
classical relation (SS)=kTX, which is used in the
cl.assical soliton theories. However, this rela-
tion is inadequate for large D where quantum ef-
fects are dominant and use must be made of the
exact rel.ations. For d =2 the critical ratio is
R z q

= 0.763. For a triangul ar 1atti ce the HTE
gives R«=0.710." It is interesting that over an
infinitesimal range of D~ 0, T, "' rises from 0
to a temperature close to that discussed by Stan-
ley and Kapl. an, "T, . Thus a very sma11. p1.anar

FIG. 3. Calculated temperature and wave-vector de-
pendence of the central peak in Pr compared with po-
larized-neutron scattering measurements for q = 0.22 I'M

by Burke et aE. (Bef. 4). At low temperatures the sing-
let-doublet model is not applicable to Pr because of
other effects.

anisotropy causes the two-dimensional, Heisen-
berg magnets to order at rather high tempera-
tures, as seen experimentall. y. ' For d =1 the
system is infinitely susceptible to order at in-
finitesimal temperatures up to R "'= 0.11. Figure
2 shows the calculated dynamical behavior (2) of
the normalized X""(q„~)for d = 3 at a fixed wave
vector q, . The parameters D and J, (anisotropic)
used for the foremost curve are chosen to rep-
resent the measured exciton mode for Pr at T
= 5 K, and q, = 0.23I"M is the minimum of the dis-
persion relation. The effect is shown when v, is
decreased by decreasing D equidistantly; a tem-
perature change has similar effect because of the
temperature dependence of Q. The increasing
damping and decreasing intensity of the excitonic
mode and the simultaneous increase of the central
peak are evident; at T, the latter becomes a 5
function. This behavior is typical for the S = 1
planar magnet. A central peak was observed"
in Pr and the temperature and wave-vector de-
pendence of the intensity is in agreement with
the predicted behavior" -y, "'b.»'/Q, ', which
approximatel. y behaves like the soft-mode fre-
quency to the power —4. A comparison is shown
on Fig. 3. In reality Pr is more complicated than
the singlet-doublet model; the effect of the higher
level. s and possible coupl. ings to nucl. ear spins
must be included. Therefore, additional features
occur at low temperatures and under pressure,
which cannot be accounted for by the singlet-
doublet model. . A detailed anal. ysis will be pub-
lished elsewhere.

In summary, the described correlation theory
makes use of exact sum rules to calculate self-
consistentl. y static and dynamic properties on a
basis of a realistic assumption of the line shape
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of the response function. It accounts for the
phenomena observed in systems with a potential. ly
soft mode. RPA and classical theories are very
inaccurate for such systems. Because of the
simple and general nature of the approximation
scheme in the correl. ation theory it may be con-
sidered as a generalization of the BPA with a
wide range for appl. ications.

It is a pleasure to thank B. I ebech, K. A.
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the central peak experiments in Pr and A. Leh-
mann Szweykowska, and J. Kjems for useful com-
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A scaling theory for the interacting disordered fermion problem is constructed by extend-
ing the perturbation in coupling constant to second order. A scaling hypothesis produces a
set of scaling equations which incorporates both localization and interaction. The resulting
exponents are compared with experiments and further experimental tests of the theory are
proposed.

PACS numbers: 71.30.+h, 71.50.+t, 71.55.Jv

Many disordered electronic systems undergo a
metal-to-insulator transition as the amount of
disorder is increased. In the past few years, in-
creasing evidence has accumulated that the nature
of the tra, nsition is governed by two aspects of

the problems: (i} Anderson localization, i.e.,
the behavior of a single-electron wave function in
the presence of a random potential and (ii} the in-
teraction among electrons in the presence of dis-
order. By now, a sealing theory of the Anderson-
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