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The first renormalization-group approach for irreversible growth models of randomly
branched aggregates is presented. The main result is that the Witten-Sander diffusion-
limited aggregation model, a discrete version of a dendritic growth model, is in a dif-
ferent universality class than "equilibrium" lattice animals. Also calculated is the frac-
tal dimension for the Witten-Sander model and the Eden model (a model developed for
the study of biological structures).
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There has been considerable recent interest in
the physical mechanisms governing the structure
of randomly branched aggregates or clusters
formed by an irreversible kinetic process. Much
of this interest is due to the applicability of these
mechanisms to a va.riety of problems such as
branched polymers and the sol-gel transition, '
coagulation of smoke particles, "turbul. ence,"
the early stages of nucleation, ' and the growth of
tumors. "Much of our understanding of the
structure of clusters formed by irreversibl. e
growth processes has been obtained by computer

si.mulation. Although such a procedure can yield
accurate results and many insights into the struc-
ture of such clusters, it nevertheless is not usual-
ly sufficient to establish the universality classes
for kinetic aggregation nor to determine how the
structure of such clusters might differ from clus-
ters formed by a random "equilibrium" process';
e.g. , percolation clusters which model gelation
and random lattice animals which model dilute
branched polymers. Here we develop a renormal-
ization-group method applicable to kinetic ag-
gregation problems.
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One measure of the structure of an aggregate is
the manner in which N, the total number of parti-
cles in the aggregate, scales with the linear di-
mension R of the aggregate, N= RD where D is
the Hausdorff or fractal dimension of the aggre-
gate." If D is less than the spatial. dimension d,
the aggregates are ramified. ;- for D=d they are
compact.

A kinetic growth model. for which D has been
determined by computer simulation was proposed
recently by Witten and Sander' and extensively
studied by Meakin. ' In this "diffusion-l, imited"
aggregation model, the initial state at t=1 is a
seed particle located at the center of a large
hypersphere. At t = 2 a particle is released on
the surface of this sphere and undergoes a ran-
dom walk until it visits a site adjacent to the
seed (a perimeter site) and joins the cluster. If
a walking particle reaches the surface of the
sphere, it is removed and another released. This
process continues until a large cluster of t =N
sites has been formed. Since sites deep inside
the cluster are "screened, " this growth process
favors treelike or dendritic structures (see Fig.
1 of Ref. 2) ~ Computer simulations suggest that
D may be a "superuniversal. " quantity for d = 2-6
given approximately by' D~s =-,' d.

In contrast to the Witten-Sander model, perim-
eter sites in the Eden cluster-growth model' are
not screened. In this model. a seed site is oc-
cupied at t =1, and the cluster grows by occupy-
ing at t = 2 a randomly selected perimeter site.
This process is repeated until a large cluster is
formed. Because of the absence of screening it
has been hypothesized that Eden clusters are
compact, i.e. , D =d. Monte Carlo simulations in
d = 2, 3 are consistent with this hypothesis. '

Since there is no Hamiltonian formulation of
either the Eden or Witten-Sander models, we
adopt a position- space renormalization-group
(PSRG) approach' in which the change in connec-
tivity of the cluster, upon repeated length re-
scaling, is determined. The lattice is divided
into cells of linear dimension b, a weight or
fugacity K is associated with each occupied site
in the cluster, and the cells are rescaled to a
single site. The renormalization transformation
K' =R(K') is introduced by defining a. cell to be oc-
cupied if a. connected path "spans" the cel.l; R(K)
includes all. spanning configurations in a cell. of
length b. D is given by'D= v '= lnA~/Inb, where
Az = (BK'/BK)z z. and K* is the critical. fixed
point.

To illustrate the method we consider the ran-

dom-animal problem" for which all. geometrical-
ly distinct clusters of s particles are weighted
by a factor of K'. We discuss the square lattice
with b = 2, and define a cell to be occupied only if
a connected path exists in both directions. We
choose the starting point to be the lower-left
corner of the cel.l. Enumerating the spanning con-
figurations [Fig. 1(a)], we find K'= 3K'+K' and
D=1.66. For b =3, D=1.60."

A one-parameter PSBG treatment of the Eden
model proceeds as follows: R(K) includes all the
spanning configurations that can be grozen from
an initial. seed site. In Fig. 1(b) we show the four
different ways that the fully occupied configura-
tion of four sites can be generated using the same
corner rul. e; there are also four different ways
of growing three-site clusters. Thus

and D =1.72. For b = 3 we find D =1.73. Monte
Carlo caleul. ations by Peters et al. ' for the Eden
model have found slow convergence of the expo-
nent v (= D ') to its asymptotic value v =1/d.
I arge-cell PSRG calculations are necessary to
study the asymptotic behavior by the present
method.

In contrast to the Eden model, a PSRG treat-
ment of the Witten-Sander model requires at
least two parameters, a fugacity K associated
with an occupied site and a fugacity W associated
with each step of the random walk of the added
particle. The renormalization transformation
for K' can be written in the form

K' =Q, , c„K'W', (2)
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FIG. 1. (a) Spanning random-animal configurations
for a b =2 ce11 on a square lattice. (b) The four dif-
ferent ways in the Eden model that a cluster of four
occupied sites can be grown from the seed at site A. .
Occupied sites are indicated by full circles and given
weight K.

where c„ is the number of different ways of grow-
ing a spanning cluster of s sites generated by
random walks totaling t steps. Since the seed
site occupies the l.ower-left corner of the cell,
we allow the random walks to enter the cell. only
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from the north and east. Examples of the genera-
tion of several spanning clusters for the case of
a 5 =2 site-bond cell are shown in Fig. 2(a). We
first enumerate all the possible ways of growing
the two-site clusters (AB and AD) beginning with
a seed particle at site A. In Fig. 2(a) we show
the three mays of growing cluster A.B, mith their
associated weights. The weight associated with
both iwo-site clusters is 2K'W(1+2W). For the
three distinct three-site clusters, we consider
all possible walks into a cell with a two-site
cluster already present. If we enumerate all pos-
sible random walks in the cell and all possible
spanning clusters, we obtain the recursion rela-
tion

K' = 6K'W'(1+ 2W) + 8K'W'(1+ 2W). (3)

2

Next consider the recursion relation for W. To
avoid the problem of enumerating the infinite num-
ber of spanning random walks on a finite cell. , we
note that at the critical fugacity only walks of
length ( =V' ' are important (N is the number of
steps in the walk). Hence walks with more steps
than the square of the end-to-end displacement
can be neglected [see Fig. 2(b) and Ref. 12], and

W' = W +2W'+ 5W~+ 14W ~

The fractal. dimension of the Witten-Sander dif-
fusion-limited aggregates is found from (3) and

(4) with X~ evat. uated at K=K* and W= W*. The
results D=1.71 for b=2, D=1.67 for 5 =3, and
D = 1.64 for a cell-to-cell transformation' agree
with the Monte Carlo resul. t' D =1.67.

An important unanswered question is whether
the ramified clusters of Witten-Sander are funda-

K' = 3K'+K'+ 6K'W(1+ W+ 2W')

+ 4K'W(1+ 2W+ 2W'+ 4W'). (5)

Now K' includes al. l. the spanning animal configur-
ations at W= O. The recursion relation for W'

must also be modified, since certain walks are
restricted because of nonspanning clusters al-
ready present in the cell. Including all possible
spanning random walks in a cel, l with some sites
already occupied, we find

mentally different from equilibrium random ani-
mals for which D=1.56." A comparison of the
numerical values of the corresponding fractal
dimensions does not allow any definite concl.u-
sions, since both numerical values are based on
approximation procedures whose accuracy is dif-
ficul. t to gauge. In order to investigate the rela-
tion between the kinetic and equilibrium clusters,
we generalize the model of Witten and Sander so
that now the role of a seed is played by a random
anima/ rather than a single site. For a given
seed we add a particle to a random unoccupied
site within a large hypersphere and allow the
particle to undergo a random walk until. it reaches
a perimeter site or joins the cluster. This pro-
cess continues until the cluster size becomes suf-
ficiently large. Our generalized model is similar
to that of Sander and Witten" who have shown,
using Monte Carlo methods, that the structure of
diffusion-limited aggregates is unchanged in the
presence of finite-sized seeds.

To construct the recursion relation for K' in
our general, ized random-animal, Witten-Sander
model, we consider all possible random-animal.
configurations (spanning and nonspanning) as seed
clusters in a b =2 cell. We then enumerate al. l
possible random walks into the cel.l and the re-
sul. tant spanning clusters:

(&) 8'
C 8 C 8 C W' = W + 2W'+ 5$'4+ 14W'

A

K~W

4 E

A D

K~W2
A D

K~W~
+ 2KW'(1+ W+ 3W'+ 5W')

+K'W'(1+ 2W') (6)

FIG. 2. (a) Possible ways of growing the cluster A.B
by a diffusion-limited process. (b) Examples of random
walks on a b =2 bond lattice. The random walk of five
steps and a net square displacement of 5 is included
in the recursion relation (4); the random walk of six
steps and a net square displacement of 4 is excluded
from (4).

The global flow diagram for the coupled recur-
sion relations (5) and (6) is shown in Fig. 3. The.
fixed points at K*=0.532, IV*=0 and K*=0, W*
=0.347 correspond to the equilibrium random
animal and unrestricted random walk, respective-
ly. The most unstable fixed point corresponds to
that of the "kinetic animal" grown by a diffusion-
limited process from the random-animal. seed
sites. Note that the flow on the critical surface
is from the kinetic-animal fixed point to the ran-
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FIG. 3. Global diagram of flow vectors from (5) and
(6). Each arrow indicates the local direction of flow,
and the important fixed points are labeled.

dom-animal fixed point. Hence we conclude that
as a consequence of the specif ic growth process
considered, random animals and diffusion-limited
aggregates are in different universality classes.

Our renormalization-group approach for kinetic
aggregation is completely general and is not limit-
ed to the particular models considered here. Now

that we have presented a renormalization-group
argument that irreversible kinetic models can
be in different universality classes from those of
equilibrium random theories, further work shoul. d
be done to general, ize the nature of the kinetic
growth model. s and to use renormalization-group
arguments to establish dynamic universality
cl.asses. One possibl. e generalization has been
proposed recently by Rikvold, ' who studied a
model in which the growth is determined by both
a diffusion process and a "surface-tension" term
that favors compact clusters. Monte Carlo simu-
lation suggests that crossover between clusters
of different fractal dimension occurs as the
screening length associated with the diffusion
growth process is varied.
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