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Uncertainty in Quantum Measurements
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The object of this Letter is to show that except in the case of canonically conjugate ob-
servables, the generalized Heisenberg inequality does not properly express the quantum
uncertainty principle. It is, in general, too weak. An inequality is obtained which does
express the principle.
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.In quantum theory, any single observable or
commuting set of observables can in principle be
measured with arbitrary accuracy. ' ' But there
is in general an irreducible lower bound on the
uncertainty in the result of a simultaneous meas-
urement of noncommuting observables. Equiva-
lently, there is an upper bound on the accuracy
with which the values of noncommuting observa-
bles can be simultaneously prepared. These are
qualitative statements of the uncertainty princi-
ple in quantum theory. My purpose here is to
obtain a quantitative expression of the principle.
We shall see that the customary generalization

l'-( I(») l';(I (t&) -!1&)I I:A, z) ] I y&l' (»
of Heisenberg's inequality'

l';(14&)l';(ly&) --,' (I.x, p]=t),
though it is of course true, will not fit the bill.
The quantity

v-(
I q&) =-

& y IA'I j» —&(t I
A

I
g&' (3)

is the variance of A in the state I g) and the units
are chosen so that 5= 1.

In order to express the principle

Uncertainty in the result of a
measurement of A and 8

~An irreducible lower
bound

quantitatively, I shall seek a theorem of linear
algebra in the form

~(A, Z), I y)) ts(~A, ft) . (5)

Here A and B are the observables which are si-
multaneously measured or prepared and I g) is
the relative state representing the outcome of the
measurement or prepar ation.

It is logically possible that the bound could
also depend on the initial state of the system,
but this could not be the case in quantum theory
where there always exists a dynamical evolution
which transforms any initial state into any other.
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Heisenberg's inequality (2) has the form (5) but
its generalization (1) does not. The right-hand
side of (1) is not a fixed lower bound but is itself
a function of I P &. For some choices of I g &, not
confined to those representing definite simulta-
neous values for A and B, it even vanishes. Even
if it were not for the other deficiencies which we
shall encounter, this alone would disqualify (1)
as a full expression of the uncertainty principle
(4).

In order to represent a quantitative physical
notion of "uncertainty, "

W must at least possess
the following elementary property: If and only if

I j& is a. simultaneous eigenstate of A and B (i.e.,
when both observables possess definite values),

must take a fixed minimum value, which I
shall for the moment assume to be zero. Other-
wise '4 must exceed zero. From this we can
infer a property of S: that it must vanish if and
only if A and B have an eigenstate in common or
have eigenstates arbitrarily close together, and

must exceed zero otherwise. Although Heisen-
berg's inequality (2) "satisfies" these require-
ments (vacuously) its generalization (1) does not.

A less obvious but equally necessary require-
ment on %, which is also not satisfied by (1),
may be obtained by considering the case when A.

and B have discrete spectra. It is important that
(5) be at least as capable of expressing the uncer-
tainty principle for discrete observables (such as
spine and angular momenta) as for continuous
ones. For although continuous observables such
as the position x are familiar enough, they are
really unphysical idealizations: The set of possi-
ble results of any realizable measurement is al-
ways countable, since the state space of any ap-
paratus with finite spatial extent has a countable
basis. Notice that if A is discrete, the only phys-
ically significant values of the variance Vg(l p&)

are zero and nonzero. For a mere (nondegener-
ate) relabeling of the eigenvalues of a discrete
observable has no physical significance, yet
under such a relabeling Vg( I g&) can be multiplied

by any desired positive value. Thus the quantita-
tive appearance of (1) is illusory in the case of
discrete observables. More generally, arguing
along these lines leads to the conclusion that a
quantitative measure of uncertainty for a discrete
observable A. must not depend on the eigenvalues
of A (except possibly for taking into account their
degeneracy structure).

Similarly, lu(A, B, I g&) can depend only on I p&

and the sets f I
a& j and j I b& j of eigenstates of A

and B. It follows that $(A, B) can depend only on
the set ((al b&J of inner products between these
eigenstates.

The most natural measure of the uncertainty in
the result of a measurement or preparation of a
siqgle discrete observable is the "entropy",

sg(l j&) =-Z.
I

&~ I g& I'»I &~
I p& I'.

S„"(I Pg)/in2 is precisely the deficiency in the in-
formation which the outcome I j& gives about fur-
ther measurements which might be made on A
(compared with the case when I j& is one of the
eigenstates j la&f). This suggests the choice

g(A, B, Iq&) =s„-(I j&)+s;(Iy&).

When A and B are discrete, this satisfies all the
requirements placed on %l in the above discus-
sion. When they are continuous, there is only
the problem that (7) is then not nonnegative def-
inite. This is no more than a technical problem
and, in view of my remarks about the unphysical
nature of continuous observables, I shall not pur-
sue it here.

I have not been able to obtain a constructive ex-
pression for the bound $(A, B) corresponding to
(7). The nonconstructive definition

(A, B) =i~ Es„-(lq&)+s;(I q&)}

is of course not especially useful. However, the
existence and relevant properties of may be
established as follows: We have

(10)

s~(ly&)+s;(ly&) =-Z. l &t l~& I'lnl &ol~& I'-2, I &y I» I'»I &gib& I'

=-S~., i(pl~&l'I&gib&I'(»1&+i~&l'+»I &gib&l').

The parenthesized quantity in (10) is nonpositive definite and is never greater than its value when I y&

lies midway between I&& and I b), i.e. , when

I y&=2 "'(1+1&~1 »I) "[l~&+exp(-~»g&~lb&)lb&].

Thus

S„-(Iq&) +S;(I j») ~ —2W., I &q l~&l'I &gib&l'in[ —,'(1+1(~I» I) j, (12)
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which implies

(13)

Since the right-hand side of (13) has all the properties requisite of , it follows that d) does also.
Equation (13) is a satisfactory quantitative expression of the uncertainty principle.
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An exact solution of the eigenvalue problem

(-d2/dk2 +6 [1—aop (x)])g„(v) =E„g„(x)
with p(v) =Z„ t~g„(x)~ and with periodic boundary condition is presented. The solution
gives rise to a density wave with [const- p(x)] proportional to sn [(x:/A) ~m] for suitable
values of the parameters ~ and m. The solution rests upon some remarkable properties
of the solutions of Lame's equation.
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n=1
(2)

and g„'s are orthonorrnal and obey periodic
boundary conditions i(„(x +L) = p„(x).

This problem has been considered approximate-
ly in various contexts earlier. In the context of
the nuclear many-body problem' Eqs. (1) appear
as Hartree's equations for N spinless fermions
constrained to a box of size L, interacting through
a two-body attractive 6-function potential with
strength 4. In an important paper entitled "Struc-
ture of Nuclear Matter" Overhauser' presented a

The present work is concerned with an exact
solution of a Hartree-like nonlinear eigenvalue
problem (the N-component nonlinear Schrodinger
equation) in one dimension,

(-d /dx2+a[1 —aors(x)]}y„(x)=F., ji„(x), (1)

where 0 -x ~L, 1 -n -N, a, = L/N, 4 is a coup-
ling constant,

weak-coupling theory (b, -0) and showed that
there exist solutions with broken translation in-
variance, in addition to the trivial solutions jr(x)
-exp(iKx), which are always lower in (total) en-
ergy. Overhauser found that the fermion density
develops a sinusoidal shape with an amplitude
that depends nonanaltyically on the coupling b, as
b. - 0. These "charge-density waves" have found
wide application in condensed-matter physics.
Exact solutions of the equations do not appear to
be known for large X, although the time-depen-
dent version of the problem with boundary condi-
tions

q„(x),„,:0

seems to be better understood. '
These equations may be viewed as the Hartree-

Fock (HF) equations for a system of 2N spin--,'

fermions on a ring with an attractive 6-function
interaction, which is of course a celebrated exact-
ly solvable many-body problem. '4 Lieb and
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