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In summary, the present work demonstrates
that XPS can determine thermochemical values
that are often inaccessible by any other method
and provides important, new quantitative insights
into the fundamental driving forces in surface
and interface segregation.
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Nonlinear mode-coupling hydrodynamics is used to study the broadening of spectral lines
near a liquid-gas critical point. The critical contribution to the line shape is given by a
universal line-shape function. For values of e =

~ (,T T, )/T, ~
whic—h are not too small, the

line assumes a Lorentzian form and the width 1 increases as —e' with the critical expo-
nent s =y+v = —0.607. Very close to the critical point the line changes into a Levy distribu-
tion [ the Fourier transform of exp(-t") where x = (3 —g)/2] and the line shape becomes in-
dependent of e (s =0).

PACS numbers: 64.70.Fx, 05.40.+j, 72.80.-e

In this work we consider the broadening of an
isolated spectral line in a fluid near a critical
point. Using hydrodynamic mode-coupling tech-
niques, we derive a universal line-shape function

and analyze the critical exponent associated with
the line width. Our theory accounts quantitatively
for the available experimental data on vibrational
dephasing in N, and 0,.' A similar model was de-
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veloped recently by Madden and Hills. ' Our anal-
ysis, however, is much more general and we
are able to provide a complete solution for the
universal line-shape function. Consider a fluid
consisting of + two-level particles with pairwise
additive interactions. The ground state will be
denoted by ~ a) and the excited state by I &). We
denote the interaction of two atoms in the

~
a)

state by V.(Q) and of one atom in ~ a) and another
in I &) by V, (Q); then the interaction responsible
for the line broadening is U =—V, (Q) —V, (Q). Here,
Q is the interatomic separation. The absorption

=1I(s) = —Ref dT exp(i«)exp[ -F(~)],
1T

where

q (T) =- f d~, (~ —~,)(U(T, )U(0)). (2)

Here & =& —&, is the detuning of the radiation
frequency ~ from the two-level frequency &.
and (U(r)U(0)) is the ground-state correlation
function:

line shape for this system, I(b, ), may be written
in the form'

(U(T)U(0)) =E UkUk'kNk(7)N k(T)Nk (0)N k (0)) —(NkN k)(Nk~N k )].

(4a)

Np and Nq are the particle number density operators of the fluid and the density of a tagged particle
(the absorber), respectively;

Ng =Q exp(ik ~ Q„),

and

Nk ——exp(iR Q )

Uk =f d r U(r)exp(ik ~ r).

(4b)

(4e)

(5)

The evaluation of the line-shape function (1) involves the calculation of the four-point (three-particle,
two-time) correlation function appearing in Eq. (3) and it is the critical behavior of this correlation
function that is being probed by the line-broadening experiment.

Using standard correlation-function manipulations, we may write

(Nk(T)N k(T)Nk'N-k') (NkN-k)(Nk'N k')+ (Nk('7)Nk')(N k(T)N-k')+ (Nk(r)N-k')(N-k(~)Nk')

+ ((Nk(v)N k(7)Ng~N g )) =I+ II+III+IV.
Equation(5) is merely a definition of the cumulant
average (( ~ )). It may be easily shown that the
contribution to Eq. (3) of III/II is O(1/Q), where
~ is the volume of the system. Thus in the ther-
modynamic limit (&- ~,N- ™,N/& =& finite) we
may safely ignore III. We have evaluated IV us-
ing the mode-coupling theory in the bare-vertex
approximation. " This results in an expression
for IV involving nonlinear couplings of &], and
N], to shear fluctuations. The shear relaxation
time is much shorter than the time scales charac-
terizing Nk (heat diffusion) and Nk (self-diffusion).
In addition, the shear viscosity is known not to
display any strong critical behavior. " These
facts have allowed us to show' that the contribu-
tion of IV/II is 0((,/$) —0((- &)'), where (,/5 is
the ratio of a microscopic length scale to the cor-
relation length, & =

I T —T, I/&, is the reduced tem-
perature, and v is the correlation-length critical
exponent. It must be stressed that IV is small
only near the critical point. The term I is can-
celed when (5) is substituted in (3). We therefore

get

(U(v )U(0)) =U Q(N-„(T)N -„)(N -„(v)Ng). (6)

(N -„(~)N ) =exp(-D, k 7),

& '(Nk(T)N k) =S(k)exp( Dk T). -
(7a)

(vb)

Here D, is the self-diffusion coefficient, D~ is
the thermal diffusivity, S(k) is the static struc-
ture factor, and n is the number density in the
fluid. We have used the Fisher-Burford approxi-

In Eq. (6) we have also replaced U, in the sum by

p sine e we ar e going to evaluate the sum in the
long-wavelength limit. This forces us to intro-
duce an. upper cutoff, 4, =10' cm ', in the sum in
Eq. (6). As will become clear below [cf. Eq.
(9b)], for systems with long dephasing times the
cutoff is unimportant. We have calculated Eq. (6)
using the following hydrodynamic expressions for
the two-point correlation functions':
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mant for S(k) near the critical point, i.e. ,
'

(1 + @2k2/K2) &»
Sk)=n Kr' 1+(1+4'q/2)k'/K' ' (8)

Here Kr /Kr' is the ratio of the actual isothermal
compressibility and that of an ideal gas and &

=t ' is the inverse of the correlation length.
=0.075, and q = g, ls the Fisher-Burford expo-
nent. ' When + =I) =0, EIl. (8) reduces to the Orn-
stein- Zernike form. '

The small-k picture described here is quite
different from the usual collisional broadening
picture of dephasing. ' Those processes are con-
tained in the high-& parts of the sums in Eels. (8)
and (6) and can be accounted for by convolving the
line shape obtained here with the usual (and pre-
sumably noncritical, e.g. , binary collision) line
shape. For the systems considered here, i.e.,
those with long dephasing times, this will not
lead to any major changes. The low-& contribu-
tions to P(T) describe the effects of fluctuations
in the mean density on length scales large com-
pared with that of the microscopic interaction.
That is, a particle can be found in a distribution
of mean density environments which can evolve
in time via thermal and mass diffusion. If the
latter processes are sufficiently slow compared
with the inverse linewidth, then the line broaden-
ing is purely inhomogeneous. However, as we
shall shortly see, this is not the case for the
Baman linewidth of N, and 0,. Clearly as T, is
approached, the low-& fluctuations become more
important and, if the high-4 contributions are suf-
ficiently small, they will dominate the line shape.
Upon substitution of EIls. (7) and (8) in EIl. (6),
we finally get

scale of the microscopic interaction relax as a
result of thermal and particle diffusion on a time
scale which is shorter than the dephasing time.

The function F (x) behaves as -x ' " "for x «1,
and asymptotically for x» 1, + -x. A simple
uniform approximation for P(x) (good to within
—5/o) is

F(x) Px(3 8)/2/(1 +qx(1"'0)/2)

where P =0.715 and 9 =0.706; consequently we
have

(10)

exp[- (P/Q)A&K T],. A(10 '
~p[—v(T)] = (11)

exp[ +P(FK2~)(3 I)/2] ~) 102

K =KDE
q Kr/Kr

where the factor of ~g ls obtained from the van
der Waals equation of state,

D,= kTK,/6vq -e', Dr =kTK/6I/q -e".

SLOPE 2/ (3 —7I)

Therefore, for smally, A &10 ', the line shape
assumes a Lorentzian form with full width at
half maximum (FWHM) I =2 PAI'K'/Q. For &
) 10', the line assumes the form of a Levy dis-
tribution" with the width f' -(&P)" ' "'«' We
have calculated the line shapes using Eqs. (1)
and (9b) and in Fig. 1 we display logl' vs logA.
We note that as predicted from the above analysis
the slope of the curve changes from 1 for A. & 10 '
to 2/(3 —I7) for /i ) 10'. ln order to analyze the
critical behavior of our line shape let us recall
the critical behavior' of the various parameters
which appear in Eq. (9):

y(T) =AF(i K'~),

where

(9)

2.0—

and

1 Kr U, 'n
(9a)

)
&x " (1++y/x) "" exp(-y ) + y —1

1+ (1++q /2)y/x y"'

(9b)

1.0—

U 00

-1.0—

r =D, +D, . (9c) -2.0—

Here y, =k, (l T)"' is a high-k cutoff. Using data
for N, at 90 K (i.e., k, '= 10' cm ', T= 10 "sec,
and & = 8 x 10 ~ cm /sec) we find that k, [&T]"
=30 which allows us to extend the limit of inte-
gration in Eq. (9b) to infinity. Physically, this is
due to the fact that density fluctuations on the
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FIG. l. Universal behavior of the dimensionless
linewidth {I'/I"~~) vs A. Note how the slope gradually
changes from 1 for small A to 2/{3 —q) for large A.
The line shapes were calculated using Eqs. {1)and {9).
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Here ~, ' is a microscopic length -1 A and q is
the viscosity. The critical exponents & and y are
v =~9r and y =1.25. Using Eq. (9) we get the criti-
cal behavior of our line-shape parameters:

A=A~& '

A, =(9~) 'U, 'n/I'~„
(12a)

(12b)

Using Eq. (11), we immediately get, for the
FWHM I' of our line-shape function, I'-&', where

—y+ v = —0.607, A. «10 2

(14)
-2[@—v(2-x])]/(3-g) =0, A-10'.

In Eq. (13), we have assumed that we are close
enough to the critical point so that D~ «D,.
Should the reverse be true, then I'-&' and the
slope s in the A. ~ 10 ' case will change to & = —y
=-1.25. The vanishing of s for A - 10' arises
from the scaling identity' y =v (2 —q). In Fig. 2

we display logI' vs log& for various values of A, .
All the information necessary for Fig. 2 is con-
tained in Fig. 1 together with Eq. (12a). We note
that the slope gradually changes from —0.607 to
0 but the value of & for which the crossover oc-
curs depends on the value of A, . The experimen-
tal data for 0, and N, are also displayed in Fig.
2 and the fit is very good with A, =7.5&&10 ~ and
2.5&10 ', respectively. The value of +p obtained
here agrees very nicely with the ordinary (non-
critical) data for liquid N, ." We note that away
from the critical point r, = («,') ' is a duration
of a collision and (U') =Uc'n/~c' is the ensemble
average for Uc (n/wo' is the mean number of
perturbers in the interaction region and Uo is
the interaction per perturber). We therefore
have A, - ( U') ~, '. The latter quantity was
evaluated by Oxtoby" for liquid N, and found to
be —10, which is in good agreement with our fit.
We should further note that (U') (and A, ) may be
alternatively estimated from purely macroscopic
considerations by looking at the density depen-
dence of the level shift (U') -(&~/&n)', ~ being the
mean frequency of the line shape and & being the
density. This may give another independent esti-
mate for A, , using experimental data which may
be readily available. This estimate is not per-
turbative in the intermolecular forces [unlike Eq.
(2)]. Finally, the present formulation may be ex-
tended to other relaxation phenomena such as +y
without major difficulty.
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The behavior of the bend elastic constant above the nematic-to-smectic-C transition in
7S5 is found to follow the prediction of Chen and Lubensky. The nature of the director fluc-
tuations in 7S5-8S5 mixtures indicates that the nematic-to-smectic-C transition near the
nematic-smectic-A. -smectic-C multicritical point exhibits both smectic layer and tilt fluc-
tuations and is not adequately described by existing models.
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The nematic-to-smectic-A (NA) transition has
been studied extensively. ' The nematic-to-smec-
tic-C (NC) transition, on the other hand, has re-
ceived less attention. One interesting aspect of
the NC transition which has remained unresolved
is the critical behavior of the Frank elastic con-
stants. Using an infinite-dimensional density
wave order parameter, de Gennes suggested that
all three Frank elastic constants should diverge
as $'", where $ is the smectic correlation length. '
Starting from a similar point of view but describ-
ing the NA and NC transitions in the same model
with different free-energy parameters, Chen and
Lubensky predicted a $ divergence. ' Finally,
with an additional dipolar order parameter, Chu
and McMillan predicted a divergence proportion-
al to $. Experimentally, the only quantitative
attempt has been a measurement of the cholester-
ic pitch near the smectic-C phase, which proved
to be inconclusive because of the large back-
ground contribution. ' Another phenomenon which
is not well understood is the nature of the nemat-
ic-smectic-A-smectic-C (NAC) multicritical
point, which occurs when a, material with an NC
transition is mixed with another with an NA a,nd
a smectic-A-to-smectic-C (AC) transition. '
This has been the subject of several theoreti-
cal' ' ' a,nd experimental" "studies. None of
the suggested models describes satisfactorily the
observed behavior near the NAC point. We re-
port here the results of light-scattering studies
above the NC transition in 4-n-pentyl-phenylthiol-
4'-heptyloxybenzoate (7S5) and its mixtures with

the octyloxy analog (8S5). Our objectives are to
test the validity of the various models describing
the NC transition and to provide information
about the nature of the director fluctuations near
the NAC point.

Our samples were synthesized by M. E. Neu-
bert of Kent State University. Pure 7S5 has a
first-order monotropic NC transition. With the
addition of 8S5, which exhibits second-order NA

and AC transitions, the phase diagram as a func-
tion of the mole concentration x of 7S5 is shown
in Fig. 1. The NC transition entropy decreases
from 0.84R, at x = 1 to 0 at the multicritical con-
centration xNAc = 0.42."

Planar samples were formed between glass
slides with the director parallel to the slides.
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