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interference terms to the polarization at 90° was
found in this way to be <0.3%. If only E1 and M1
amplitudes need be considered then the differen-
tial photoneutron polarization [the differential
cross section 0(6) X the polarization p(6)] can be
written as

o(0)p(6) =Ag, sinb + By, ,,sinvcosd,

where A, depends on E1-M1 interference and
Bk, uy depends on the products of £1 and M1
amplitudes that lead to different final states of
the np system. Of course, only A, contributes
to the polarization at 90°., The primary effect
of the MEC is to increase* the M1 transition am-
plitudes, namely the (3S, +3D,) - 'S, transition.
Thus, the magnitude of the photoneutron polariza-
tion p(90°) must become larger. In order to ex-
plain the present data, one must reduce the M1
transition amplitude in such a manner that the
thermal n-p capture cross section is not changed,
or increase the E1 transition amplitude in a way
that does not alter the total photoabsorption cross
section.’®

Clearly, a high-accuracy angular distribution
of photoneutron polarization and cross section is
necessary in order to unravel the multipole com-
ponents of the reaction *H(y,n)H at low energy.
In addition, further theoretical work will be nec-
essary in order to explain this simplest nuclear
reaction.
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Classical trajectories and semiclassical eigenvalues are calculated for an atomic Rydberg
state in a magnetic field. Perturbation theory describes a classical trajectory as a Kepler
ellipse which rocks, tilts, and flips in space as orbital parameters evolve slowly in time.
Exact numerical calculations verify the accuracy of perturbation theory for n~30, B<6 T.
Action variables are calculated from perturbation theory and from exact trajectories, and
semiclassical eigenvalues obtained by quantization of the action. Good agreement is found

with observations.

PACS numbers: 31.20.Wb

The behavior of a highly excited atom in a
strong magnetic field is a topic of much current
interest.’ The present studies were motivated

by the desire to understand and interpret experi-
mental measurements? made at Masschusetts
Institute of Technology on one-electron atoms in
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TABLE I. Action-angle variables for Kepler orbits.

II = Lz

I,=L

I3= (uk?/=2H)!/?
number; I3>1,

z component of orbital angular momentum
magnitude of orbital angular momentum, I,> |I,|
principal action, related to the Kepler energy, and corresponding to the principal quantum

o longitude of ascending node (angle in the x-y plane between x axis and line of nodes)

@y argument of perihelion (angle in the plane of the orbit between line of nodes and Laplace
vector, which points to perihelion)

@3 mean anomaly, related to the true anomaly x, which is the angle (in the plane of the orbit)

between Laplace vector and instantaneous position of particle

states around » ~30 in magnetic fields of 1-6 T,
For such systems the term proportional to B?

in the Hamiltonian is significant, but still rela-
tively weak, and its effects can be calculated by
perturbation theory. We have calculated electron
trajectories (for combined Lorentz and Coulomb
fields) both by exact numerical methods and by
using a form of classical perturbation theory that
was developed in celestial mechanics for calcu-
lating planetary orbits. Semiclassical energy
levels have been obtained by using Bohr-Sommer -
feld quantization of action variables.

Consider an atom in a constant magnetic field
directed along the z axis. In a frame of refer-
ence that is precessing about the z axis at the
Larmor frequency, the Hamiltonian for the elec- I

Ap; -1 (T(9H o /X T .
—Ll1 = —_— = —[= = .
=1t <81j>dt— <T]0 Hldt>, j=1,2;

T 9,

Al -1 [T/ %H 3 (A T )
—L =7 1_4( )dt:_é—(_f’]_<;‘j0Hldt), .7:112,3'

tron is
H=p*/2u~k/r +\M(x%+y?) =H,+)\H,, (1)

where x =e®B?/8 uc? and k=Ze?, With use of clas-
sical perturbation theory (as given, for example,
in Goldstein®) the trajectory of the electron may
be described as a Kepler ellipse with orbital pa-
rameters that evolve slowly in time. For this
purpose, Kepler action and angle variables® pro-
vide the simplest canonical momenta and coordi-
nates. These are defined in Table I and Fig. 1.

Equations of motion are obtained by rewriting
the Hamiltonian (1) in terms of action and angle
variables and averaging the canonical equations
over one cycle, 7, of the unperturbed Kepler mo-
tion:

The average development in time of I,, I,, I, ¢,, and g, is therefore given by canonical equations

Kepler ellipse
plane of orbit

direction of motion
line of nodes
ascending node

FIG. 1. A Kepler _grbit in space. The orbital plane intersects the x-y plane in the line of nodes. The angular
momentum vector, L, with a conical arrowhead, is perpendicular to the orbital plane. The Laplace—Runge-ILenz
vector A lies in the orbital plane and passes through the perihelion of the Kepler ellipse.
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having the effective Hamiltonian

_ T
wl(lzy oy 1y 13) =(\/7) -Jo H,dt.

(3)

This effective Hamiltonian can be evaluated by a long but straightforward calculation; it turns out to -

be

A, =(\/ u2R%) (12 /412 [(1,% + L) (5L,2 = 3L,2) + 5(1,% - 31,%)(L,2 - [,%)cos2 g, |.

The behavior of the orbit can be deduced from
conservation laws associated with the effective
Hamiltonian. L, and H are of course exact con-
stants of the motion. In addition, since A, is
independent of ¢,, it follows that I, is, to first
order, a constant of the motion, Now I, is re-
lated to H,, which in turn is related to the major
axis and the period of the Kepler ellipse, so that
it follows that the ellipse evolves under the per-
turbation in such a way that its major axis, and
its zero-order energy, and the period of motion
of the particle around the ellipse, do not change
with time. In their measurements of the spec-
trum of high Rydberg states of an atom in a mag-
netic field, Kleppner and his collaborators?
found evidence that there may be three conserved
quantities associated with the electron motion.

In first-order perturbation theory, these con-
served quantities are found to be L., H, and H,,.

Conservation of H and H, implies conservation
of H,, and this gives further information about
the orbit: Since I, and I, are fixed, 7, and ¢,
evolve such that the system follows a curve of
constant H,. A contour plot of #,(J,, ¢,) is shown
in Fig. 2. Two types of motion can be seen:
clockwise motion around-closed loops (“libration”)

30

T
0 "2 T

¢.

FIG. 2. Contours of constant H(Iy, ;[ =%,153=30%).

(4)

and motion along open contours (“rotation”). A
U-shaped separatrix separates rotational and
librational curves, and a point of stable equilib-
rium exists near the center.

With simple reasoning it is now possible to
describe the time development of the orbit in
space under the influence of the magnetic field.
For example, consider motion on a librating tra-
jectory from A to B in Fig. 2. At A ¢,=7/2, and
the Laplace (or Runge-Lenz) vector, which points
toward the perihelion of the ellipse, is perpendic-
ular to the line of nodes and lies close to the posi-
tive z axis. When ¢, increases, the Laplace vec-
tor tips slightly away from the vertical, and then
as I,= ILI decreases, the eccentricity of the
orbit increases (the minor axis shrinks), Mean-
while, the ignored coordinate ¢, is increasing,
and the plane of the orbit precesses. Similar rea-
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FIG. 3. The spectrum of energy levels for m =1,
n =29, 30, and 31. The solid lines are perturbation-
theory results. The points are exact semiclassical
eigenvalues for the highest energy state in the n=30
manifold. These were obtained by using Einstein-
Brillouin-Keller quantization of numerically computed
trajectories.
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soning gives a complete description of the trajec- of the corresponding curves, extended from 0 to
tories. 27, The half-integral quantization condition (6b)
The exact equations of motion have been inte- is derived from a long argument that we cannot
grated numerically, and the results confirm the reproduce here.
description given by perturbation theory. A little analysis* now leads to the following
With use of the above information about the tra- properties of the spectrum, which are the most
jectories, the spectrum of semiclassical energy important results of this study.
levels can be calculated by quantization of action (1) Given n and m, the total number of states is
variables. I, and [, are quantized just as in the obviously # —m, and the first-order energy shift
unperturbed problem, AE for every state is positive, Also in first or-
der, AE is proportional to B2,
IL=mhk, I ,=nk. (5) (2) The energy shifts AE all lie between
The third quantization condition comes from the en®m(bn = 2m) < AE < €n*(5n% - 3m?) , (M

ti iabl
new action variable where €, =\ %/ 12k2,

A,=[Ldg, (6a) (3) There are two types of quantum states, as-
=g+ ). (6b) sociated with the two types of trajectory. We al-
s0 call the quantum states “librational” and “ro-

For librating trajectories, this action variable is tational.”

the area inside one of the loops in Fig. 2, while (4) Librational states are doubly degenerate.
for rotating trajectories it is the area under one | The total number of such states N is an even
integer close to
1 _ [(m?+3n?/5 _ 2m
NLE;)’LCOS 1<W>—mcos 1<(7Z-2—:W>. (8)

(5) Librational levels all have energy shifts ly- |
ing between the minimum given in Eq. (7) and
'L. 1. Schiff and H. Snyder, Phys. Rev. 55, 59 (1939);

crit _‘ 2 2 4 2
AE T = e(n?/2)(n® +m?) . (9) A. F. Starace, J. Phys. B 6, 585 (1973); A. F. Starace
(6) Rotational states are nondegenerate and have and G. L. Webster, Phys. Rev. A 19, 1629 (1979);

energy shifts which lie between A E(:li[ and the J. M. Wadehra, AStrOphyS. dJ. 226, 372 (1978); V. Can~
A . . uto and D. C. Kelly, Astrophys. Space Seci. 17, 277
maximum given in (7). —

(1972); J. J. Labarthe, J. Phys. B 14, 1467 (1981);

(b)Chemistry Department.

(7) Energy gaps between adjacent levels are C.W. Clarke, Phys. Rev. A 24, 605 (1981); A. G.
smallest for those states for which the energy Zhilich and B. S. Monozon, Fiz. Tverd. Tela 8, 3559
shift is closest to AE '™, (1966) [Sov. Phys. Solid State 8, 2846 (1967)]; A. R.

(8) Wave functions for librational levels tend to P. Rau, Phys. Rev. A 16, 613 (1977); H. Hasegawa
be concentrated near the +z axes, while those for and R. E. Howard, J. Phys. Chem. Solids 21, 179

rotational levels are largest near the x-y plane. (19§1); R. J. Elliott and R. Loudon, J. Phys. Chem.
Solids 15, 196 (1960); D. R. Herrick, Phys. Rev. A

=30 = ho i
FEne; gyolevels f‘;i n=30, m: 1a1;e E.’thwn n 26, 323 (1982); R. Cohen, J. Lodenquai, and M. Ruder-
1g. 5. Our resulls are consisient with experi- man, Phys. Rev. Lett. 25, 467 (1970); M. Ruderman,

ments and calculations done by the Massachusetts Phys. Rev. Lett. 27, 1306 (1971); E. G. Flowers, J.-F.

Institute of Technology group, and they provide a Lee, M. A. Ruderman, P. G. Sutherland, W. Hille-
simple interpretation of the phenomena that are brandt, and E. Miiller, Astrophys. J. 215, 291 (1977);
found in the spectrum. R. H. Garstang, Rep. Prog. Phys. 40, 105 (1977); J. C.

Gay, in Proceedings of the NATO Advanced Study In-
stitute on Photophysics and Photochemistry in the
Vacuum Ultraviolet (to be published). An analysis
quite similar to that given here, but carried out less
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The effect of turbulent electron diffusion from stochastic electron orbits on the stability of
low-beta fluctuations is considered. A set of coupled self-adjoint equations is derived for
the fluctuation potentials ¢ and A;. For the tearing mode, it is shown that stability is ob-
tained for sufficiently large values of the diffusion coefficient. Provided D, ~ 1/n, this im-
plies that a density threshold must be surpassed before the tearing mode is observed. Nu-
merical calculations also support this conclusion.

PACS numbers: 52.35.-g, 52.55.Gb

One of the main concerns of tokamak research
is the prevention of major plasma disruptions.

It is generally considered that such major dis-
ruptions must be eliminated in an actual fusion
reactor to prevent prohibitive damage to the first
wall. The prevailing theoretical picture of major
disruptions features low poloidal mode number
(low m) tearing modes which saturate to produce
magnetic islands. It is possible for such mag-
netic islands to overlap to form large stochastic
magnetic regions which enhance particle diffu-
sion, and, in the case of major disruptions, lead
to catastrophic plasma confinement loss.'”® Con-
trol of such disruptions requires elimination or
suppression of these tearing-mode magnetic is-
lands.

Traditionally, the tearing mode is analyzed by
use of resistive magnetohydrodynamic (MHD)
theory which predicts instability for A’>0, a
condition which is generally satisfied by experi-
mental profiles when w =2. Here A’ is the jump
in the logarithmic radial derivative of the per-
turbed magnetic potential, A, across the ration-
al surface. Recent experimental results from
Alcator C, however, show that a threshold in
plasma density must be surpassed before the m
=2 tearing mode is observed, even though A’>0.*
This observation, which is in qualitative dis-

agreement with resistive MHD theory, motivated
the present work.

In this paper, a fully kinetic approach to the
tearing mode is used which includes the effects
of turbulent electron diffusion resulting from
stochastic electron orbits.” A system of coupled
self-adjoint equations is derived for the perturbed
potentials A, and ». This system follows from
Ampére’s law and quasineutrality applied to the
linear ion response and the nonlinear electron
response resulting from the normal stochastic
approximation (NSA).> The NSA includes the ef-
fects of electron diffusion in the electron response
and is valid in regions where the electrons ex-
perience stochastic orbits. In this limit the NSA
is essentially equivalent to the direct-interaction
approximation (DIA).° The resulting system of
coupled equations is globally valid and includes
the effects of collisions, equilibrium current, dif-
fusion, and shear. In the appropriate limit this
system yields both the finite-8 drift wave” and the
tearing mode. Since the system is self-adjoint a
variational principle can be formed. In this prob-
lem the tearing mode exists in a background of
microturbulence such as that due to drift waves.
This same set of coupled equations yields unstable
finite-8 drift waves when analyzed for high-m
modes, from which a turbulent diffusion coeffi-
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