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interference terms to the polarization at 90' was
found in this way to be S 0.3/o, If only E1 and M1
amplitudes need be considered then the differen-
tial photoneutron polarization [the differential
cross section &(8) x the polarization p(0) j can be
written as

o(&)p(&) =A»sin&+&Is»sin&cos8,

where 4» depends on F-1-M1 interference and

B~~ » depends on the products of E1 and M1
amplitudes that lead to different final states of
the nP system. Of course, only A» contributes
to the polarization at 9o . The primary effect
of the MEC is to increase4 the M1 transition am-
plitudes, namely the ('S, +'D, ) -'S, transition.
Thus, the magnitude of the photoneutron polariza-
tion p(90') must become larger. In order to ex-
plain the present data, one must reduce the M1
transition amplitude in such a manner that the
thermal n pea-pture cross section is not changed,
or increase the E1 transition amplitude in a way
that does not alter the total photoabsorption cross
section. "

Clearly, a high-accuracy angolar distribution
of photoneutron polarization and cross section is
necessary in order to unravel the multipole com-
ponents of the reaction 'H(y, n)H at low energy.
In addition, further theoretical work will be nec-
essary in order to explain this simplest nuclear
reaction.
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Classical trajectories and semiclassical eigenvalues are calculated for an atomic Rydberg
state in a magnetic field. Perturbation theory describes a classical trajectory as a Kepler
ellipse which rocks, tilts, and flips in space as orbital parameters evolve slowly in time.
Exact numerical calculations verify the accuracy of perturbation theory for n=30, 8 & 6 T.
Action variables are calculated from perturbation theory and from exact trajectories, and
semiclassical eigenvalues obtained by quantization of the action. Good agreement is found
with observations.

PACS numbers: 31.20.Wb

The behavior of a highly excited atom in a
strong magnetic field is a topic of much current
interest. ' The present studies were motivated

by the desire to understand and interpret experi-
mental measurements' made at Masschusetts
Institute of Technology on one-electron atoms in
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I, =mk, I, =nS. (5)

The third quantization condition comes from the
new action variable

A, = f I2d@2

=(n, + —,')h.
(6a)

(6b)

For librating trajectories, this action variable is
the area inside one of the loops in Fig. 2, while
for rotating trajectories it is the area under one

soning gives a complete description of the trajec-
tories.

The exact equations of motion have been inte-
grated numerically, and the results confirm the
description given by perturbation theory.

With use of the above information about the tra-
jectories, the spectrum of semiclassical energy
levels can be calculated by quantization of action
variables. I, and I, are quantized just as in the
unperturbed problem,

of the corresponding curves, extended from 0 to
2v. The half-integral quantization condition (6b)
is derived from a long argument that we cannot
reproduce here.

A little analysis4 now leads to the following
properties of the spectrum, which are the most
important results of this study.

(1) Given n and m, the total number of states is
obviously n —m, and the first-order energy shift
4E for every state is positive. Also in first or-
der, ~ is proportional to 8'.

(2) The energy shifts AE all lie between

e,n'm(5n —2m) (~ ( e,n'(5n —3m'), (7)

where c, =A.R'/ p,'0'.
(3) There are two types of quantum states, as-

sociated with the two types of trajectory. We al-
so call the quantum states "librational" and "ro-
tational. "

(4) Librational states are doubly degenerate.
The total number of such states Ni is an even
integer close to

m' +3n'/5, 2m
Ng n cos 2 2 m cos I 2 2wyj2 ~

7T m —n jn -mj (6)

(5) Librational levels all have energy shifts ly-
ing between the minimum given in Eq. (7) and

aZ"" = e,(n'/2)(n'+m') .
(6) Rotational states are nondegenerate and have

energy shifts which lie between ~"" and the
maximum given in (7).

(7) Energy gaps between adjacent levels are
smallest for those states for which the energy
shift is closest to ~"".

(6) Wave functions for librational levels tend to
be concentrated near the +~ axes, while those for
rotational levels are largest near the x-y plane.

Energy levels for n =30, m =1 are shown in
Fig. 3. Our results are consistent with experi-
ments and calculations done by the Massachusetts
Institute of Technology group, and they provide a
simple interpretation of the phenomena that are
found in the spectrum.
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The effect of turbulent electron diffusion from stochastic electron orbits on the stability of
low-beta fluctuations is considered. A set of coupled self-adjoint equations is derived for
the fluctuation potentials P and A~~. For the tearing mode, it is shown that stability is ob-
tained for sufficiently large values of the diffusion coefficient. Provided D„-1/n, this im-
plies that a density threshold must be surpassed before the tearing mode is observed. Nu-
merical calculations also support this conclusion.
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One of the main concerns of tokamak research
is the prevention of major plasma disruptions.
It is generally considered that such major dis-
ruptions must be eliminated in an actual fusion
reactor to prevent prohibitive damage to the first
wall. The prevailing theoretical picture of major
disruptions features low poloidal mode number
(low m) tearing modes which saturate to produce
magnetic islands. It is possible for such mag-
netic islands to overlap to form large stochastic
magnetic regions which enhance particle diffu-
sion, and, in the case of major disruptions, lead
to catastrophic plasma confinement loss. ' ' Con-
trol of such disruptions requires elimination or
suppression of these tearing-mode magnetic is-
lands.

Traditionally, the tearing mode is analyzed by
use of resistive magnetohydrodynamic (MHD)
theory which predicts instability for &') 0, a
condition which is generally satisfied by experi-
mental profiles when ~ =2„Here 6' is the jump
in the logarithmic radial derivative of the per-
turbed magnetic potential, A. |i, across the ration-
al surface. Recent experimental results from
Alcator C, however, show that a threshold in
plasma density must be surpassed before the m
=2 tearing mode is observed, even though &'- 0.4
This observation, which is in qualitative dis-

agreement with resistive MHD theory, motivated
the present work.

In this paper, a fully kinetic approach to the
tearing mode is used which includes the effects
of turbulent electron diffusion resulting from
stochastic electron orbits. ' A system of coupled
self-adjoint equations is derived for the perturbed
potentials A

~~
and P. This system follows from

Ampere's law and quasineutrality applied to the
linear ion response and the nonlinear electron
response resulting from the normal stochastic
approximation (NSA). ' The NSA includes the ef-
fects of electron diffusion in the electron response
and is valid in regions where the electrons ex-
perience stochastic orbits. In this limit the NSA

is essentially equivalent to the direct-interaction
approximation (DIA). ' The resulting system of

coupled equations is globally valid and includes
the effects of collisions, equilibrium current, dif-
fusion, and shear. In the appropriate limit this
system yields both the finite-P drift wave' and the
tearing mode. Since the system is self-adjoint a
variational principle can be formed. In this prob-
lem the tearing mode exists in a background of
microturbulence such as that due to drift waves.
This same set of coupled equations yields unstable
finite-P drift waves when analyzed for high-m
modes, from which a turbulent diffusion coeffi-
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