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of the oscillations in real space is somewhat
longer on the trailing edge than on the leading
edge. Therefore, interference effects are only
observable when the two wave packets are nearly
coincident as discussed by Klein, Opat, and
Hamilton.'® To our knowledge, this is the first
experiment in which the detailed longitudinal
shape of a neutron wave packet has been observed,
and the uncertainty relation for neutrons in the
longitudinal direction explicitly verified.
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The proposition that the coherence length of de Broglie wave packets remains unchanged
even though the length of the packets increases upon propagation is discussed and demon-~

strated.

PACS numbers: 03.65.Bz, 42.50.+q

An interesting conceptual difference between
classical interferometry and neutron interferom-
etry is brought into evidence by the experiment
of Kaiser, Werner, and George.' It concerns
the question of longitudinal coherence and is due
to the intrinsically dispersive propagation of
massive de Broglie waves. The problem may be
illustrated with reference to a Gaussian wave
packet propagating in accord with the Schréding -
er equation. The width of the packet, as shown
in Fig. 1, increases according to the expression®

0, %(t)=0,%0) +[Ht/2mo, (0)]2. (1) .

Neutrons, which may be represented by such a
wave packet, are coherently split in a neutron
interferometer and are later recombined after
traveling along unequal optical paths. It is obvi-
ous that no interference is to be observed if the

path difference, Ax, exceeds the spatial extent
of the wave packet. However, if the interferom-
eter is a long way downstream from the mono-
chromator (in which the initial packet was pre-
pared), the partial packets will now overlap, as
shown in Fig. 2. May we now expect an observa-
ble interference pattern?
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FIG. 1. Evolution of a freely propagating Gaussian
wave packet.
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FIG. 2. Evolution of two parts of a wave packet sep-
arated by a distance Ax. They eventually overlap as a
result of the spreading upon propagation.

The answer, as shown by experiment,’ is no!

In spite of the fact that the wave packets spread,
the contrast (analogous to the fringe visibility
function in classical optics), V(Ax) =1 ax =L min)/
(I max *Imin) remains unchanged. Its width, which
is the longitudinal coherence length, is constant
and proportional to 0,(0), no matter how long the
wave packet has evolved since its initial prepara-
tion. Before giving a formal proof that this fact
is consistent with theoretical expectations, we
present the following heuristic argument: By its
very nature, an interferometer reveals the rela-
tive phases of wave packets. To see how the
phases behave, consider the plots of the real part
of the wave function for a propagating wave pack-
et, shown in Fig. 3. Clearly, both the spatial
and temporal frequencies change along the evolved
packet. The shorter wavelengths, representing
faster motion, precede the longer wavelengths
representing slower motion, as expected. (This
fact is obscured if we consider only the square

of the wave function as in Figs. 1 and 2.) Con-
sider now the superposition of the evolved wave
packet with a replica of itself, shifted by a length
Ax. Obviously, if the path difference, Ax, is too
great, the overlapping parts of the wave packets
will not have a stationary phase relationship with
each other and will produce “beats” which move
through the detector and average to zero. A sta-
tionary interference pattern will result only when
the path difference is small enough, and this
turns out to be independent of the distance trav-
eled by the wave packet, i.e., of the time ¢ for
which it has evolved. A formal proof of this
statement follows.

Let the wave function y(x, v, z, £) represent the
state of a neutron before entering the interferom-
eter, having evolved from the initial state (x,y,
z,0). The state emerging from the interferom-
eter is given by

U(r, t)=4+{ulx,y,2,t) +¢lx +ax, y,2, 1)}, (2)

564

—~~ A~ AVWWWWWWWW W anmsnnns
———— A VYWWWWWWWWW MWW

AAAAAA
VVVVvvY

—— [
W.

FIG. 3. The real part of the wave function for a
propagating wave packet, showing the effect of disper-
sion.
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where Ax is the extra path length inserted in one
arm of the interferometer relative to the other.
In analogy with photon optics®* we define the
normalized correlation function y(Ax) as the en-
semble average of the overlap integral of the
time-dependent wave packets:

Y(Ax)
= [«p*(x, 9,2, )l + &x, v, 2, D)) dx dy dz . (3)

The magnitude of y(Ax) may be shown to corre-
spond to the fringe visibility function, defined
earlier, i.e., |y(Ax)|=V(Ax). It is not immediate-
ly obvious that Eq. (3), in which time appears
explicitly, is actually independent of time. How-
ever, if we consider the wave packet in Fourier
space, i.e., if we set
¥x, 9,2, £)

= | A() expi(K -T = hk%t/2m) &k (212, (4)
then, by applying Parseval’s theorem to Eq. (3),
we get

Hax) = [ (A®)[2) expilk, ax) dk, (5)

in which the right-hand side is clearly indepen-
dent of time.

A more direct proof that this is indeed the case
follows if we introduce the time displacement
operator for the x direction, D,(Ax). Then

fil)*(x,y,39 t)q/(x +Ax,y,z, t)dXdde
=(lt)| D (ax) | 9(2)) (6)

and
.d )
ih a <¢(t)IDx(AX)|iP(t)>

=(y(¢)|[ D, (ax), H} | u(£))=0 (7

since the displacement operator commutes with
the Hamiltonian, i.e.,

[ D, (ax), H])=0.
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The particular case shown in Figs. 1-3 was cal-
culated on the basis of a Gaussian wave packet
but we see that the argument is completely gen-
eral. The special feature of a pure sinusoidal
wave with a Gaussian envelope is that it has a
minimum uncertainty product, i.e., 0, 0, =3%.
With the evolution of time such a wave packet re-
tains its Gaussian profile but not its sinusoidal
form, as seen in Fig. 3, and thus 0,0,>3. (In
fact 0, stays constant and 0, grows monotonical-
ly.) However, since y(Ax) is independent of time,
the coherence length remains equal to its initial
value which is proportional to 0,(0). The experi-
ment thus demonstrates that ¢,(0)o,= 3.

Similar conclusions will apply to electron inter-
ferometry® and also to photon interferometry® in
a dispersive medium. In fact, there seems to be
a strange gap in the optical literature concerning
coherence in dispersive media. We speculate
that the reason for this is that the most elegant
statements, such as the Zernike-~Van Cittert
theorem®* or the proposition that the correlation
function obeys the wave equation, are not im-
mediately applicable to dispersive media. Thus,
the substitution Ax =c At¢ is not applicable and
longitudinal coherence is no longer synonymous
with temporal coherence.
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