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Two-Dimensional Angular Momentum in the Presence of Long-Range Magnetic Flux
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It is shown that eigenvalues of two-dimensional angular momentum remain integer valued
in the magnetic field of a solenoid, contrary to published assertions that they are modified
by the Qux. For a vortex, flux does contribute, and the angular momentum can fractionize,
as asserted in the literature, provided phases of wave functions are chosen consistently with
the solenoid problem. Long-range effects of flux, the distinction between orbital and canon-
ical angular momentum, and interactions with Cooper pairs are essential to this argument.

PACS numbers: 03.65.Ca, 03.20.+i, 41.70.+t

It is now well established that physical systems
containing solitons carry unexpected quantum

numbers. For example, in the presence of a mon-
opole —a three-dimensional soliton- a particle
with integral spin can form a half-integer-spin
bound state'; vis. a boson can be converted to a.

fermion. ' There has appeared in this Journal a
series of papers alleging similar behavior in the
presence of a vortex —a, two-dimensional soli-
ton—and even in the presence of a conventional
solenoid. ' While we do support the statement
about the vortex, we show here that for the sol-
enoid it is false: Angular momentum has conven-
tional eigenvalues. All peculiarities can be ex-
plained by the difference between the kinematical
orbital angular momentum, and the conserved,
canonical angular momentum, but this is a famil-
iar distinction whenever velocity-dependent forc-
es occur, as in the interaction of a charged parti-
cle with a magnetic field, which is under discus-
sion here.

The published statements' concerning charged-
particle-solenoid interactions have already been
criticized in the context of a three-dimensional
geometry. We amplify this criticism by discuss-
ing the problem entirely in a two-dimensional set-
ting. Moreover, we consider time-varying sol-
enoid configurations, since time dependence lim-
its ambiguity in constants of motion. Of course,
the two-dimensional rotation group, O(2), being
Abelian, does not force a group-theoretical quan-
tization on the angular momentum's eigenvalues.
Nevertheless, by adhering to a conventional,
Noether definition of the rotation generator, we
show that a spinless particle, in the presence of
a solenoid, possesses integer angular momentum
eigenvalues. (It is to be recalled that in the mon-
opole problem, Noether's theorem correctly
gives the full angular momentum, including its
nonkinematical part. )

I.=-,'pv'+ (e/c)v X(r), v=r,
where r(t) is the particle's coordinate,

(2)

A is a vector potential for the magnetic field,
which is a two-dimensional (pseudo) scalar: B
=V&&X. We take 8 regular everywhere, and
short range, rapidly approaching zero for r &p.
Thus the "solenoid" is the region y & B.'

A convenient form for the vector potential is
&'(r) = (2~) 'e"(r"'/r)@(r);

The magnetic field is determi. ned by 4, which is

Since the O(2) group does not give a unique def-
inition for the angular momentum in a two-dimen-
sional solenoid field, one may add an arbitrary
constant to the angular momentum operator, thus
obtaining arbitrary eigenvalues. Equivalently,
one may allow an arbitrary angular phase in the
wave function. However, we believe that this is
neither natural nor required. Moreover, we
show that the proposed modification' cannot be
supported in the general time-dependent situa-
tion, and runs counter to the correspondence
principle.

Also we examine the vortex, and confirm that
the angular momentum can become half-integral, '
provided that phases are chosen naturally, as in
the solenoid problem with integral eigenvalues.

Charged Particle in the solenoid field. We con-—
sider a (heavy) charged particle, of mass p,
which moves in a magnetic field B, pointing along
the z axis, homogeneous in that direction, and in-
variant against rotations around that axis. Dy-
namical motion is confined to the two-dimension-
al x-y plane, and is governed by the (nonrelativ-
istic) Lagrangian,
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~$"(r) =(q/2~)C p (r);

p, (o) = o, p„( ) =1,
(8)

which tend to 0$ as n —0 (p „=,1). Note that
the profiles of the regularized gauge potential
are no longer rotationally covariant, because
there now is a, radial component proportional to
VPn'.

Thus, if we are willing to accept a rotationally
noncovariant description, a nonsingular, short-
range vector potential can be employed. Making
this choice, we find it more convenient to use
the gauge

xN $
—x —v 0N $ y

0N $ (y /2 7r )4— (9)

so that

&N$'(r) = —r'((p/2~)4'(r);

AN$" = —(q /2$')O', AN$ =0.
(10)

negligible for r &R, and vanishes at the origin:

& = (2mr) 'O'.

We shall chose 4 to vanish at y =0 as well; this
insures that X is nonsingular there, but it is
long range, since for r &R, 4 will be nonzero,
rapidly approaching its asymptote C„.The sig-
nificance of 4 is that it is the flux in a circle of
radius r,

d'r ~(') =C(r),

and 4 is the total flux. Note that X is rotation-
ally covariant; no fixed, external vectors occur
in its definition.

Equation (3) represents a choice of gauge in
which X 's profiles are symmetric and nonsingu-
lar. An alternative choice gives a short-range
potential, at the expense of a singularity at the
origin. The singular configuration, related to
(3) by a singular gauge transformation,

A$ = X —WQ$, 0$= (y/2m)C „,
carries the following rotationally covariant pro-
files:

&$'(r) = —(2~) '~"(r'/r)[~(r) —4 ];
X,"=0, A, "=(2~r) '(C —C ).

Here X vanishes for R )r, but the origin must be
excluded, in order that (7) describe the magnetic
field (4) (rather than one with an additional 5-
function singularity at the origin). A regulariza-
tion may be achieved by considering a family of
nonsingular gauge functions, parametrized by n,

Here we shall not analyze in detail the singular,
short-range gauge description (6), (7), because
the required regularization (8) renders it analo-
gous to the nonsingular, unsymmetric, short-
range gauge (9), (10). We shall begin with the
symmetric gauge (3). To show that its long-
range tail presents no complications, our results
will be rederived in the unsymmetric, nonsingu-
lar, short-range gauge (9), (10).

An infinitesimal rotation

M = rx p = rx pv + (e/c)rx X

= r&& pv+(e/2ne)e. (12)

In particular, in the region outside the solenoid
r &R, the orbital angular momentum is supple-
mented by the total flux (e/2nc)C „.

Let us notice, moreover, that nothing depends
on the flux being constant in time. The angular
momentum is conserved as a consequence of ro-
tational invariance. Of course for time-indepen-
dent flux, r& pv and 4„separately are constant
outside the solenoid, but this special case ob-
scures the general situation. With time-depen-
dent flux only the combination (12) is a constant
of motion.

In quantum mechanics p, not pv, becomes the
operator (5/i) W. Hence in the presence and in
the absence of the solenoid, the angular momen-
tum operator is the same: M = (h/i)rx V = (h/i) 8/
ey. Completeness of its eigenfunctions or Her-
miticity of the operator requires that the eigen-
values be integer spaced (in units of h). Howev-
er, this does not eliminate the possibility of an
arbitrary common phase, proportional to q, in
all the eigenfunctions, which would shift all angu-
lar momentum eigenvalues by the same, arbi-
trary quantity. Such arbitrariness cannot be
eliminated by group-theoretical arguments.

In familiar situations, the further requirement
of single valuedness (or continuity) is set on the
wave function, and thus the remaining y-depen-

5r' = —~&"r',' 4" = 0, 5@=cu

leaves the Lagrangian (1) invariant, when the
vector potential is given by (3), 5L =0. There-
fore, the conserved angular momentum, accord-
ing to Noether's theorem, is M = (5L/5v) ~ 6r/ul.
The canonical momentum p= 5L/5v differs from
the kinematical momentum p, v, since there are
velocity-dependent (magnetic) forces present:
p = p, v+ (e/c)X. As a consequence the angular
momentum possesses a contribution in addition
to the orbital one:

S56



VOLUME 50, NUMBER 8 PHYSICAL REVIEW LETTERS 21 I'EBRUARY 1983

angular variables are separated as usual:

4'(t, r) = (27r) "'e™~u(t, r),
8 5 1 8 8

sS —u
~t

[Sm —(e/2s c)C ]'
2p, r

(14a)

(14b)

The centrifugal barrier is shifted by the flux, but
the angular momentum remains an integral quan-
tum.

Let us now see how things look in the short-
range gauge (9) and (10). The Lagrangian

L„,= ,'p v' —(e/c)—v~ r(y/2s) 4'(r) (16)
is no longer invariant under rotations (11); rath-
er it changes by a total time derivative 5L»
=~ d[- (e/2mc)C ]/dt. Consequently angular mo-
mentum is still conserved; its form is

MNs= rx p+ (e/2n c)@. (16)

Here rx p equals rx p. v, since the vector poten-
tial (10) has only a radial component, and so (16)
coincides with (12), when written in terms of the
gauge-invariant, but noncanonical, velocity oper-
ator. However, the spectrum of (16) should be
reexamined.

The interaction term in (15) depends explicitly
on y and is not single valued at y =0, 2p, there-
fore, wave functions should not be single valued.
Since the gauge transformation (9) is implement-
ed in the quantum theory by a unitary operator,

UNS = exp(- ie/hc)&NS,

1 e 2

HNS —UNSHUNS p+ VQ NS2P c c
(17)

p—

MNs=UNsMU„S '= rx P+(e/2vc)C,

dent phase is removed, leaving integral eigenval-
ues for M.

For the solenoid, there is no reason to abandon
single-valued (or continuous) wave functions: The
potential is rotationally symmetric and nonsingu-
lar; that it ranges to radial infinity as 1/r does
not force a modification (see below). Hence we
conclude that, contrary to published assertions, '
the angular momentum spectrum consists of 5
times the integers gpss". MC =h~

In the Schrodinger equation,

8 1
ih —+ =II+ = p ——X

Bt 2I c

previous ones by the multiplicative phase
exp[(-ie/Kc)(q/2s)4], but the eigenvalues of an-
gular momentum remain the same integers.

It should be clear that the description in the sin-
gular, short-range gauge (6), (7), when properly
regulated as in (8), will also result in integer an-
gular momentum eigenvalues, and wave functions
will acquire a multiple-valued phase exp[(-ie/
hc)(q&/2s)4 ], in the limit that the regularization
is removed (n —0).

Let us observe that in short-range gauges, sin-
gular or not, wave functions remain multiple val-
ued even outside the solenoid r &R, because of
the factor exp[(-ie/hc)(cp/2r)C „].This may ap-
pear paradoxical, but we assert that the phase
factor is not unnatural: The potential, present
for r &R, is multiple valued, thus inducing multi-
ple valuedness in the wave function, even in the
region of vanishing X, in which, however, there
is nonvanishing flux.

If one asserts that in the long-range gauge,
wave functions are not single valued, but acquire,
after rotation by 2s, a phase exp[(ie/Kc)4„], then
in short-range gauges wave functions are single
valued outside the solenoid, and angular momen-
tum eigenvalues become integers augmented by
(e/2mc)C „.This is the anomalous angular mo-
mentum announced in the literature. '

However, the above is incorrect; not only is
there no basis for abandoning single valuedness
of wave functions in the presence of manifestly
rotationally symmetric and regular, albeit long-
range, potentials, but also the above violates
quantum mechanical ideas and the correspondence
principle, which asserts that quantized operators
arise from classical adiabatic invariants. If an-
gular momentum eigenvalues have a contribution
proportional to 4„,and the flux varies in time,
they would be time dependent; this cannot be so.
Also, a quantity with arbitrary time dependence
cannot be an adiabatic invariant.

Moreover, as we demonstrate below, the vor-
tex gives rise to half-integer angular momentum
eigenvalues' only if wave functions are single val-
ued in the regular, single-valued gauge.

Finally, let us consider the combined particle-
field angular momentum in the regular, long-
range gauge. In the absence of long-range effects
this constant of motion takes a familiar form,
which is obtained from the Belinfante, symmet-
ric energy-momentum tensor:

M ~ = r x p v + c 'fd'x xx (E x 5)

eigenfunctions in the new gauge are related to = rx pv —c 'fd'xx ~ EB (18a)
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The above differs from the canonical, Noether
angular momentum M by a surface term:

M=Ma+c 'J d'x&, (E'.e" x"A ). (18b)

However, the long-range nature of the gauge po-
tential prevents us from using (18a) and (18b) in-
terchangeably. Indeed one can show that M~ is
not conserved when the flux is time dependent:
M~ = (-e/2wc)4„. Also the surface term in (18b)
does not vanish, and its contribution is precisely
(e/2mc)C', so that M =M~ + (e/2wc)C

„
is constant.

Substituting the solenoid magnetic field into (18)
and using V ~ E =el(r —x) gives

M =rx p v+(e/2nc)C =rxp, (19)

which coincides with the particle-mechanics re-
sult (12).

Charged particle in the vortex field. By th—e
vortex, we shall mean static configurations of
electromagnetic and complex scalar Higgs fields,
where the electromagnetic field has the solenoid
profile, with quantized total flux 4 = (vhc/e)N.
The Higgs field X, representing Cooper pairs,
carries charge 2e. In the regular long-range
gauge, the profile of the Higgs field,

y(r) =e'"~f(r); N=O, + 1, . . . , (20)

is not rotationally invariant, since the phase car-
ries angular dependence, but it is single valued
and continuous. .The function f(r) vanishes at the
origin, and rapidly approaches its asymptote f„
for y &R. A gauge transformation with gauge
function 0 changes the Higgs field to

y -(exp[- i (2e/hc)]&b (21)

so that in the singular gauge (6), (7) the Higgs
field is radially symmetric, ps= f(r), as is the
gauge field.

The charged particle is described by a complex
field 4, which is the only dynamical variable of
the problem, governed by the following Lagrange .

density:

In a conventional Lagrangian, one expects that
infinitesimal rotations are realized on the field by
54= —&~e"r'8„.4= —~ 84/Bcp, and that in a rota-
tionally invariant theory, the change in the La-
grange density is a total derivative, so that the
Lagrangian is invariant: 52 = —+a, (e"r'2), 5L
=Jd'rM =0.

However, with the background fields (3) and

(20), the Lagrangian is not invariant against the
conventional rotation transformation, because of
the angular dependence of the Higgs background
field. But if we supplement the usual rotation by
a gauge transformation, as suggested in Ref. 3,

54 = —~e"r'8, 4 +i ~N4/2

= —~ (a/aq —,' iN)e—
(23)

then invariance holds: M = 0. The consequent
constant of motion follows by Noether's theorem,
and is identified with the angular momentum:

(We require 4*4 to have the same value at cp = 0
and at y =2m, so that M is real )Tim. e depen-
dence is governed by an equation which follows
from (22),

8+ 1
26 = p ——A 4+gx++,

~t 2p,
(25)

and M is conserved when 4' at y = 0 is the same
as at cp =2p.

Note that the rotation generator (24) possesses,
in addition to the kinematical term, a further con-
tribution, which generates the gauge transforma-
tion that is necessary to compensate for the rota-
tional noninvariance of the Higgs background
field. But before concluding that the angular mo-
mentum is modified, we must evaluate fully each
contribution to (24).

Time may be separated in (25) by a two-phase
Ansatz .'

fe ~
g = jhow* —4 ——

~t 2p. Sc
@(t r) - Et/h

q (r) ~e 't/4
q g( )r' (26a.)

——.g~*+*x——.g~~x* (22)

In addition to electromagnetic interactions, the
particle experiences intera, ction with the scala, r
Higgs field, through the last two terms in (22),
whose form is dictated by gauge invariance.

We substitute the vortex configuration (3) and

(20) into (22) and inquire how the resulting La-
grangian, containing external gauge and Higgs
fields, responds to rotations.

The resulting static equations,

Eg, = (2V) '[p —(e/c)~]'g, +gyp„
—Eg. =(2u) '[p+( / )~1'(.+.y*P„

(26b)

are well known, and similar ones have been ana-
lyzed in the literature. ' The eigenvalue problem
is of the form Hg =Ev'g,

=(')
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E = jd'r /~HE/ fd~r p~a'g.

The angular dependence is separated by

(r ) (27()-1/ e2i(n N+/ )2' (y)

(~r) —(2&)-1/2ei(n-///2) Pu ( ) .

—5 ~ d d
Eu~ =

2p, y. dy dr

(27a)

and the norm jd'r P~c'g, which is nonvanishing
for sufficiently small g, can be set to+ 1. Eigen-
values are real, since H is Hermitian:

ing in powers of the electromagnetic coupling con-
stant e, also shows that the angular momentum
of a charged particle in the presence of a vortex
with odd-integer flux is half-integer, provided
that the charged-particle field is required to be
single valued and continuous in the nonsingular
long-range gauge.

Discussions with K. Johnson helped us to clar-
ify our argument; we thank him. This work is
supported in part by the U. S. Department of En-
ergy under Contract No. DE-AC02-76EHO3069.

+ [h(n+N/2) —(e/2s c)4']'
Cl u, +gfu„

—5 1 d d-Eu, =
2p g dg

(27b)

I = ~~ f &'~(lu, l' lul') -=+ ~It (28)

The contribution from the gauge transformation
has disappeared- Rs it must, since there does
exist a. rotationally symmetric, albeit singula, r,
gauge- —but the effect of a vortex with odd-integer
flux remains in the half-integral quantum num-
bers for the angular momentum, confirming pub-
lished results. ' Note that this conclusion re-
quires (l) the presence of the charged-particle-
Higgs-field interaction, and (2) single valuedness
and continuity of the wave functions. Indeed, if
the vortex were treated with multiple-valued
boundary conditions, only integer quantum num-
bers would occur.

We have also performed a completely dynami-
cal, field-theoretical analysis of this problem,
where in the fully relativistic theory we exploit
the SO(2, 1) algebra to define unambiguously the
angular momentum as the corn(nutator of the I o-
rentz boost generators. This treatment of the
vortex, using collective coordinates and expand-

[a(n —N/2) + (e/2~c) +]'
+ u2+gfu, .2pr

Consistent with our treatment of the solenoid,
wave functions should be single valued and con-
tinuous in the nonsingular, single-valued gauge
that we are using, and indeed this is the choice
made in the literature. ' Consequently m + 2N
must be an integer, which means that for odd N,
m is half-integer. Finally we insert (27a) in (24)
and find
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