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Transition from Hydrodynamic to Ballistic Quasiparticle Behavior in a Fermi Gas: The Response
of a Vibrating-Wire Resonator in a 3He-4He Solution from0. 3 to 10 mK
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Measurements of the frequency shift, 6f&, and the damping, bf 2, of a vibrating wire in a
saturated 3He-4He solution are reported. A transition is observed in the 3He quasiparticle
Fermi gas from a hydrodynamic regime at 10 mK to a collisionless-excitation gas regime
at the lowest temperatures, ( 0.3 mK, where the mean free path becomes extremely long.
The comparison between Af &

and Af 2 supports the slip theory of Htijgaard Jensen et al. with
the recent modification proposed by Carless, Hall, and Hook.

PACS numbers: 67.60.Fp. 51.20.+d

In a dilute solution of 'He in He at low tempera-
tures the thermal and hydrodynamical properties
are determined largely by the 'He quasiparticles.
Since these quasiparticles form a degenerate
Fermi gas, the mean free path, l, for quasipar-
ticle-quasiparticle scattering varies as T and
as a result l becomes very long at low tempera-
tures. For example, for a saturated solution
(6.4%) of 'He in 'He at zero pressure, l is 0.5

mm at a temperature of 1 mK. Thus it is straight-
forward to devise experiments with a length scale
considerably smaller than the quasiparticle mean
free path below 1 mK. Consequently these solu-
tions provide an ideal laboratory for studying the
transition, in a degenerate Fermi gas, from an
essentially hydrodynamic regime at 10 mK to an
almost collisionless-excitation gas regime at 0.3
mK.

In this paper we describe measurements of the
damping and frequency shift of a resonant vibrat-
ing wire in such a solution through this transition
region. The results give a dramatic verification
of the theory of slip effects derived by Hgjgaard
Jensen et a/. ', when modified by the method of
Carless, Hall, and Hook' to give the correct ex-
pression in the long-mean-free-path limit.

As described in an earlier paper, ' the helium
solution is cooled by intimate contact with copper
slabs coated with sintered silver powder, the
copper nuclei being demagnetized from 6.5 T at
8 to 10 mK to a final field of 14-42 mT, in which
field the experiments are performed. In the
double-cell arrangement used, the final heat leak
to the specimen is reduced below 15 pW and the
lowest helium temperatures achieved are below
0.3 mK. (The Pt NMR thermometer used in this
particular study had a large time-dependent heat
leak, apparently from insulation on the wires, so
that thermometry below 0.4 mK is not reliable.
However, the variation of hf, and bf, indicates

that the lowest temperatures were below 0.3 mK,
where these two parameters saturate. )

The vibrating wire consists of a length of 0.124-
mm-diam tantalum wire, bowed into a semicircle
of radius 4 mm, situated in a small free volume
of helium, the loop lying in the plane of the mag-
netic field. The wire is about 1.5 mm from the
nearest walls. The flapping oscillation of the
loop is excited by the Lorentz force as an ac cur-
rent is passed through it in the static magnetic
field. The oscillation is observed by the meas-
urement of the voltage induced across the moving
wire. The loop used in the present series of
measurements oscillates in a vacuum at a fre-
quency of f,'"= 897 Hz with a Q value greater
than 30000. In a saturated 'He- He solution at
0.5 bar (7% 'He) the resonant width at the highest
level of damping, i.e., at the lowest tempera-
tures, is only -50 Hz and thus analysis of the
resonance is still a reasonably straightforward
matter.

Tantalum was chosen as the wire material for
two reasons. Firstly the high density (16.7 g/
cm') gives a low resonant width, since the higher
inertia of the wire is less affected by the drag
from the liquid, and secondly since Ta is a super-
conductor the in-phase voltage has no component
arising from the resistance of the wire. A small,
but significant, signal from the self-inductance
of the wire had to be subtracted from the quadra-
ture voltage.

The measurements are controlled by a desk-top
computer. The frequency is stepped in 100 steps
(20 sec per step) through the resonance by a fre-
quency synthesizer and the in-phase and quadra-
ture voltages are measured at each step by a
lock-in amplifier using a 3-sec time constant.
The resonance curves obtained in this way fit
very well to the expected Lorentzian type of line
shape appropriate to a damped harmonic oscilla-
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where p is the total density of the helium, p„ the
normal fluid density (i.e., 'He density), and p~
the density of the wire. The functions k and k',
first define'd by Stokes, depend on the ratio of the
wire radius, a, to the viscous penetration depth
5=(qIP„~)' '. In this regime we expect both Af,
and Af, to increase together with decreasing tem-
perature as the viscosity q rises. In physical
terms, af, arises from the energy dissipated by
the moving wire which increases with viscosity,
and Lf, arises from the change in effective mass
of the wire which also increases with the viscous
penetration depth as more helium moves with the
wire.

The experimental results' at low temperatures
differ markedly from Eq. (1), since the hydro-
dynamic approximation of a local viscosity breaks
down. As the temperature is reduced below 1
mK, Af, saturates towards a limiting value,
whose magnitude ean be calculated from a simple
model appropriate to the limit l »a. In the model,
we regard the interaction between the wire and
the helium as one of bombardment of the wire
by the individual quasiparticles of the Fermi gas.
The result is

Sf, ' =Anp F/211'ap„, (2a)

where n is the 'He quasiparticle density, p F the
Fermi momentum, and A. a numerical constant
(of order 2). The same philosophy gives no fre-
quency shift from the bombarding quasipartieles,
since the force on the wire is in phase with its

tor. The curves can be characterized by the two
parameters hf, and Ef, representing respective-
ly the frequency shift and the frequency width.
The width, bf» is taken as the frequency inter-
val between the two half-height points of the in-
pha. se voltage. The resonant frequency f, is deter-
mined from both the maximum of the in-phase
voltage and from the zero crossing point of the
quadrature voltage and hence the frequency shift
bf, =f,""-f,is obtained.

These two parameters characterize the behavior
of the liquid. In the standard hydrodynamic treat-
ment for a high-Q resonance (which we expect
to describe our data well at high T) af, and bf,
are given by

velocity. Hence we expect a shift given by

(2b)

corresponding to the first (backflow) term only
in Eq. (1a). Actually since the backflow is driven
by the incompressibility of the fluid, it is possi-
ble that the small backflow contribution of the
'He component also disappears in this limit. In
this case one would have

&f,"'If.= (p -p.)I2P&. (2c)

Unfortunately the precision of our measurements
is not quite sufficient to make a definitive test-of
this point.

A series of measurements of Af, and bf, are
shown in Fig. 1 for a saturated ("7UIo 'He) solu-
tion of 'He in'He at a pressure of 0.5 bar, meas-
ured in a magnetic field of 42 mT. We have
chosen to plot the resonant frequency f, (effective-
ly a measure of the shift hf, ) directly against
the width Af„a representation in which T enters
only as a parameter, thus avoiding the difficul-
ties of thermometry at the lowest temperatures.
The form of the bf1 vs af, curves is broadly the
same at all pressures up to 16 bars. However,
at the higher pressures bf, rises to a saturation
value' approaching 100 Hz, at which width both
bf, and bf, become hard to measure with the
necessary precision if excitation currents are
limited to values at which the liquid does not ex-
hibit heating. Thus the curve of Fig. 1 is better
characterized at the lower pressures. The meas-
urements were made as the sample warmed up
after demagnetization, a long process taking 7 d
to reach 1 mK.

The form of the curve in Fig. 1 shows clearly
the influence of the mean free path at the lower
temperatures. With decreasing temperature, the
resonance width bf, rises gradually to a limit
[cf. Eq. (2a) ] while at the same time the shift
af, first increases, as the fluid becomes more
viscous, but then below 2 mK decreases again
to the background value [cf. Eq. (2b) J as mean-
free-path effects dominate. At the lowest tem-
peratures f, is again almost at its high-tempera-
ture value, although bf, is about 50 times greater
than its value at 20 mK.

According to Eq. (2a), the limiting value of hf2
should be independent of the resonant frequency.
In the present series of experiments we had
three independent wire resonators, one of which
was placed between walls only a fraction of a
millimeter away. This latter resonator was de-
formed by differential contraction during cooling
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Stokes theory of Eq. (1). This curve is inadequate
even at the very highest temperatures. Curve B
is based on the slip theory of Hpjgaard Jensen et
al. ' [their Eqs. (113) and (114)]. This calculation
uses an expansion parameter P=0.579l/(0. 579l+a)
modifying Stokes theory to take into account slip
at the walls, as proposed by the authors. One can
see that at the higher temperatures this gives a
better fit to the experiment than the simple Stokes
calculation showing that the slip theory gives a
good account of the behavior for the case l «a.
However, when l begins to become comparable
to a (at around 3 mK) the curve no longer agrees
with experiment. In particular, since the expan-
sion parameter P is limited to values P ~ 1 by the
definition given above, the theory does not pre-
dict the plateau in 6f, or the low-temperature
collapse of hf, suggested by the simple bombard-
ment arguments in Eq. (2). In order to retain the
limiting values of Eq. (2) we have therefore fol-
lowed the ideas of Carless, Hall, and Hook' and
have recalculated the theoretical curve using as
an expansion parameter

0
891

I

892
I

893 891
Resonant frequency, Hz

I

895 0.579l 1+nl/a
a 1+I/a (3)

FIG. 1. The variation of the resonant frequency fp

with the width 4f2 for a vibrating-wire resonator in a
saturated solution of SHe in He at 0.5 bar. Open sym-
bols and filled symbols are results from two separate
demagnetizations. The curve labeled A is a calculation
using the Stokes theory of Eqs. (1) (see text). Curve
B is a calculation using the slip theory of Hfjgaard
Jensen et al. (Ref. 1). Curve g is based on the slip
theory or Ref. 1 modified according to the iedas of
Carless, Hall, and Hook (Ref. 2). CurveD represents
a calculation similar to that of curve g, but with two
modifications: (i) the expansion parameter P is deQned
in a different way (see text), and (ii) the 3He backflow
is assumed not to contribute to Af, at low temperature
Cgiving an upward shift of about 0.2 Hz at low tempera-
tures, cf. Eqs. (2b) and (2c)]. The arrow marks the
value, 894.21 Hz, chosen in all four calculations as
the vacuum value of fo when corrected for backflow of
the 4He background only [i.e., as in Eq. (2c) l.

to touch the walls at one point giving two lengths
of loop with the high resonant frequencies of
4000 and 8000 Hz. The limiting frequency widths
at the low temperatures for these two resonances
were the same as those shown in Fig. 1 for the
well-behaved resonator to within a few percent,
giving further support to Eq. (2a).

A number of theoretical curves are also shown
in Fig. 1. Curve A represents a purely hydrody-
namic calculation based on the straightforward

where a is a constant of order 2. This leads to
the same result as Ref. 1 when l «a but (with
suitable adjustment of the constant u) to the same
result as Eqs. (2) when l is very long, with a
smooth (albeit somewhat arbitrary) interpolation
between these limits. In the discussion of their
results in superfluid 'He-B, Carless, Hall, and
Hook propose n = 2.46, which corresponds to A
=9~/16=1.77 in Eq. (2a).

The curve C in Fig. 1 is based on such a calcu-
lation using a value of 2.3 for the constant n.
Since the adjustment of n changes the limiting
value of bf, on which the curve terminates at low

T, this constant is rather accurately determined
by the experiment. Our data at higher pressures
are consistent with the same value of n.

The remarkable agreement between experiment
and this calculation is all the more striking since,
apart from this slight adjustment of o. (or A) to
give the correct limit of Af„all the other quanti-
ties are measured and thus not negotiable. The
wire parameters p~ and a are measured directly.
The value of qT' is obtained from the variation
of Af, with T in the hydrodynamic regime (we find
qT'~0. 3 &10 ' SI units for the saturated solution
at 0.5 bar consistent with values of earlier work-
ers at higher temperatures' ). The value of p„
is taken from the solubilities and molar volumes
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of Watson, Reppy, and Richardson. ' The magni-
tude of lT~ is then fixed (since q = —', Np Fl, and n

and pF are derived from p„only). This is a, par-
ticularly significant feature of the agreement
since the form of the Af, -bf, curve in the inter-
mediate region depends strongly on the scale of
f/a.

In spite of the success of the calculation, some
important questions remain. Firstly, Eq. (3) is
somewhat empirical in form; in fact we can make
our good agreement even more precise by in-
stead using

0.579l 1+a. l/a ~
a 1+l/a

represented by curve D in Fig. 1. Clearly these
empirical ideas need a firmer physical basis.
Secondly, the theory is appropriate to an infinite
volume of fluid in the low-frequency limit (l/5
«1, or &uT «1 with l =n FT). Although this is a
reasonable starting point in our work, it is by
no means an accurate assumption since a calcu-
lation for our configuration suggests that ~T
-0.08 at 1 mK and -1 at 0.3 mK. However, at
0.3 mK the calculated values of / and & are both
about 3 mm, a length greater than the container
size. Hence it seems possible that as T falls
the small. container size may take the vibrating
wire with unseemly haste into a low-temperature
limit given by Eqs. (2), and that &u~ effects do not

play a significant role. iPresumably the value of
&uv is irrelevant in the limit of Eqs. (2), since the
only assumption is that the wire is bombarded by
quasiparticles from an equilibrium background.
When l is greater than the container size then
presumably these quasiparticles come from the
walls and the behavior of an infinite fluid is of
little importance. ]

In summary, we have made the first measure-
ments of the damping and frequency shift of a

vibrating wire in a saturated 'He- He solution
below 0.4 mK. The damping and frequency shift
vary together in a very distinctive way, as shown
in Fig. 1, with behavior characteristic of a grad-
ual transition in the degenerate Fermi gas from
a local hydrodynamic regime at 10 mK to a bal-
listic quasiparticle regime at the lowest tempera-
tures, less than 0.3 mK.

It is worth noting in this context that 'He-~He
solutions are unique. The full range of this tran-
sition can be followed since the mean free path
varies by a factor of 1000 over the available tem-
perature range in the degenerate Fermi fluid.
Corresponding effects in pure 'He are more dif-
ficult to observe since in the normal fluid the
mean free path is more than 10 times shorter at
the same temperature and the superfluidity at
the lower temperatures introduces additional
complications of its own.
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