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explain our experimental result. A more de-
tailed experiment and/or a new theory is neces-
sary to the final determination of ABC.
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The recently proposed model Hamiltonian for a linearly conjugated diatomic polymer is
studied in the continuum limit in which there emerges a field-theoretic Dirac Hamiltonian,
exhibiting charge fractionization into irrational numbers, just as in the discrete model.

PACS numbers:

There has appeared in this journal a Letter® de-
scribing a diatomic model polymer which supports
solitons and the concomitant charge fractioniza-
tion, with charge values that are irrational num-
bers, given by a transcendental function of the
energy difference between energy levels of the
two atomic constituents. This generalizes earlier
work on polyacetylene, where the two atoms are
identical (the energy difference vanishes) and the
fractionization is 3 per spin degree of freedom.?
In a sense it also generalizes work on commen-
surate Peierls insulators, where the charge frac-
tion is a rational number.®

Here we discuss the relation of this new investi-
gation in condensed-matter physics' to parallel
research in continuum quantum field theory.
Fractionized fermion charge 3 was found in a
one-dimensional charge-conjugation-symmetric

72.15.Nj, 11.10.Ef, 61.40.Km

Hamiltonian, describing integer-charged and
spinless fermions interacting with a soliton.* For
a more general Hamiltonian without charge-con-
jugation symmetry, the fraction is an irrational
number, parametrized by the magnitude of
charge-conjugation—invariance violation.> The
continuum charge-conjugation-symmetric Hamil-
tonian® arises as the continuum limit® of the dis-
crete Su-Schrieffer-Heeger Hamiltonian,? which
describes polyacetylene.” By taking the continu-
um limit of the Rice-Mele Hamiltonian relevant
to a diatomic polymer,' we arrive at a Hamilton-
ian, violating charge-conjugation invariance,
which is a particularly simple realization of the
examples envisioned in Ref. 5, and can be thor-
oughly analyzed.® The analysis is especially
beautiful, being very general, not relying on de-
tails of the Hamiltonian nor on the soliton pro-
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file, but rather using topological (asymptotic) properties.
Reference 1 posits the following model (RM) Hamiltonian,

HRM=thonon + aZjaj Taj - Ejtﬁl,j (a; Tbj+1+bj+1Taj) -ay, 1 b,Tb, - Zztzn,l (szaz+1+az+1sz); (1)
as a description of a diatomic linear chain of N/2 (N — =) atoms of type A (odd sites, labeled by j) and
N/2 atoms of type B (even sites, labeled by 7). Operators ajT,aj and b,%,k, are fermion creation and
destruction operators at the A and B atomic sites. (We ignore spin, which is a passive label.) The
hopping amplitude ¢,,, , (#=j or I), for the transfer of a fermion between neighboring sites, is taken
to be linear in the phonon field y,, :

tn+1.n=t0—7(yn+l_yn)' (2)

Energy levels of the two atomic constitutents are assumed to be uniformly displaced, one relative to
the other, by 2a=E , —Eg. H joon, Which governs phonon dynamics, will henceforth be ignored; i.e.,
we shall consider the fermions as moving in a prescribed, external phonon field.

To pass to the continuum, we define

a; = (=1)72(28) 20 (js), b, = (- 1)/2(2s)2V (Is), v, = (1), (3)
where s is the lattice spacing. Consequently one may rewrite (1) as
Hypy=—4it 2, [UT(2ns +5)V'(2ns + )+ V(2ns)U’ (2ns)]
+2as),, [U(2ns +s)U(2ns +s) - VI(2ns)V(2ns)]
+4iys Y, @ msNUT(ms)Vns) = VIins)Uns)]. (4)
Here we have further defined

2sU'(2ns)=U(2ns +s) = U(2ns —s), 2sV'(2ns +s)=V(2ns +2s) - V(2ns),

2U(2ns)=U(2ns +8)+U(2ns —s), 2V(2ns +s)=V(2ns +2s)+V(2ns). ©)
It also follows that
2., UT(2ns)U(2ns) =2, 5U T(2ns +5)[2U (2ns +5) + U (2ns + 3s) + U (2ns - s)]
=3, U (2ns +s)U(2ns +s)+0(s). (6a)

Similarly one easily proves
2.V (@ns +s)V(2ns +s)=), VT(2ns)V(2ns)+0(s), (6b)
25 [UT(2ns)V' (2ns) + VT(2ns +s)U'(2ns +s)]=2 (U T (2ns +s)V'(2ns +5) + VI(2ns)U' (2n5)]+O(s). (6c)
This allows us to present (4), up to terms of order s, as
Hyy == (2ist)s 2 (U ms)V (ns) + VIwms)U s)]+ as 35 [UTs)U(ns) = V(s )V ns)]
+(4iy)s Y, @ ms)NU Tms)Vins) - Vims)u(ns)]. (7

In the continuum limit ns~—x; s, — [dx; Uns), U'(ns), V(ns), V'(ns), and @ns)-Ux), dU(x)/dx,
V(x), dV(x)/dx, and ¢ (x), respectively. Thus we find

Hypy— Jdxi2st ¥ 1ol 1a¥ /dx — 4yo¥ 1020 + a¥ 103}, ¥(x)= < %;) , (8a)

where o? are Pauli matrices. By reabsorbing constants, and redefining the spinor ¥ ~2-12(1 +10°)¥, we
conclude that the continuum version of the RM Hamiltonian is proportional to

H=[ax{¥ Yo% ~'a¥ /dx +¥ To™ ¥ + ¥ 1030} (8p)
or in first-quantized form, the Hamiltonian is a one-dimensional Dirac operator in the external field
[

ﬁ((p)zap+3g0+c3e, a=0%, B=0', p=itd/dx. (9)
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Charged-conjugation symmetry would be pres-
ent if there existed a unitary matrix which anti-
commutes with (¢). But no such matrix can be
constructed, we may say that €, which is a meas-
ure of the energy difference in the level struc-
ture of the two atoms, is the charge-conjugation—
symmetry breaking parameter: in its absence,
o® anticommutes with B(¢). Thus (9) is of the
general form considered in Ref. 5, and in partic-
ular the special case of constant, rather than po-
sition-dependent, symmetry-breaking parameter
was analyzed in Ref. 8.

In order to compute the charge, we need the
eigenmodes of (9) in the presence of a soliton,
¢(x)=¢,(x), and in its absence, i.e., in the “vacu-
um,” ¢ =¢,=const, |¢ | =p:

H@We’=E%°, H@ Wg®=E)*.

The charge density at level E is p;(x)=¢, ()

Xy ,(x), and the physical charge density is got by
integrating p, over all negative E, since the neg-
ative energy levels are filled:

p(x)=f_0w dE py(x). (11)

Finally the soliton charge is obtained by integrat-
ing the charge density in the soliton field over all
x, but to avoid an infinity, we must subtract a
similar integral of the charge density when no
soliton is present:

Q = fax{p® (x) - p°k)}.

It is possible to evaluate (12) completely, with~
out specifying the soliton profile ¢ ;. All we need
to know about ¢ is that it interpolates between
opposite “vacuum” values as x passes from —
to +o0:

(10)

(12)

@) —+|@gl =+ p. (13)

x>+
We now study the energy eigenmodes (10). The
vacuum problem is trivial: The wave functions
are plane waves and the spectrum is continuous, |

beginning at + (u2+ 62)1/2; EO=+ (B2+ p2+€2)2,

When the soliton is present, let us note first
the existence of a discrete bound state at E€ =¢
(without loss of generality we take € >0), The
wave function is proportional to

(el-rao.e)

This is normalizable, precisely because ¢ ; tends
to opposite limits at opposite ends of the real
line.® To proceed we write ¥ as (¥) and find that
u satisfies a Schrodinger-like equation, while v
is determined by u:

(=03,%2+¢* - u=([E>-€*u,
v=(E +€)7 '@, +9u.

The “potential” is 92 —¢’, which tends to u? as
x -+ in the presence of the soliton, and is iden-
tical to u? in its absence.

With a soliton field, Eq. (14) possesses a bound
state, u®(x)=expl—- [*dx' ¢  (x')]; this is just the
Dirac bound state, previously identified. We
shall assume that the soliton profile is sufficient-
ly weak so that (14) supports no other bound
states. (The subsequent development is easily
modified if other bound states are present.) The
remaining eigenmodes of (14) lie in the continu-
um, which begins at + ()u2+€2)1/2, ES=x 2+ p?
+,€2)1/2.

It is now straightforward to construct the neg-
ative-energy solutions to the Dirac equations
(10). Thus in the presence or absence of the
soliton we have

oo lEse m,
<-[2E<E+e>1-1/2<a,+ga>uk ’

19(‘!’)% =E{,, E=-(%+p2+e2)'’2,

(14)

(15)

where u, is the properly normalized continuum
solution to the Schrodinger equation. The charge
density at (negative) E is given by

P, ) =[E +€)/2E]lu, @) +[2E E +€)]"1 (0, +¢ ), (x)|?

=lu, )2 +[4E € +€)] "0x?|u, @)|*+[2E E +€)]7%  [lu, &) %0 (x)]

(18)

with the second equality following from the first, as a consequence of (14). The soliton charge is the
integral over all x and & of the above evaluated with ¢ =¢ ;, minus a similar integral in the vacuum;
but in the vacuum, |«,|? is constant, as is ¢, and so the last two terms in (16) vanish. Thus

szd",/_: (d—z—fr—) Loy, ® ()| = |, °6)] 2]

“ar 1
- (27) 4E(E +€)

[3x|uks(x)lz+Zluks(x)l"‘(ps(x)]lﬁij"m.

amn
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The double integral can be evaluated by complete-
ness: The u,° represent all the Schrodinger
modes in the vacuum, while the «,® are one short
of being complete in the soliton sector, since the
normalized bound state is not among them.

Hence the first term contributes —1 to @. To
evaluate the second term in (17), one needs the
Schrodinger eigenmodes in the presence of a
soliton, but only at x =+, These may be given
in terms of transmission and reflection coeffici-
ents:

u, s (x) Te ikx .
x —>®© (1 8)
uks(x) . eikx+Re-lk1.
x =
Thus, upon dropping oscillatory terms, we are
left with

“ dk o

R=-1+/) S EE+

[7I*+(R[2+1)], (192)
where the plus sign between the contributions at

x =« and at x = -~ arises because of sign rever-
sal in ¢, (x). Unitarity, | T[>+ |R|2=1, permits

a final evaluation

Q=—7""tan"*(u/e).

This is a special case of the formula derived
in Ref. 5, by an approximate method for a more
general Hamiltonian, and is equivalent to the re-
sults of Ref. 1. Note that in the limit € - 0, the
charge-conjugation-symmetric value is re-
gained®*: Q|..,=-3.

One may even determine the charge density,
when an explicit soliton profile is chosen. For
example for ¢, (x)=p tanhux, we have

(19b)

u, () == (1+ik/u)"*e** (tanhux — ik/p), (20a)
p0)= [ o [py* )=, )
- (20b)
= [_21—17 tan~! eﬁ] 9, tanhux =§—“ 9,0, (x).
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Finally we remark that the present results may
also be derived by sophisticated mathematical
procedures, based on index and spectral-flow
theory of differential operators.’® Thus the de-
scription of a diatomic polymer ranges from con-
densed-matter physics, to quantum field theory,
and even to mathematics, providing a striking
example of these disciplines’ unity when they are
used to describe natural phenomena.,
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