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Continuum Limit of Supersymmetric Field Theories on a Lattice
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The ground-state energy density Eo is examined for a wide class of two-dimensional
supersymmetric quantum field theories by use of a strong-coupling lattice expansion.
It is shown that regardless of how the lattice expansion is defined (there are many ways
to put the fermions on the lattice) Eo—0 in the continuum limit.
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It is known that the two-dimensional quantum field theory whose Euclidean Lagrangian in the pres-
ence of external sources is

Ls =Y(&l &)'+ zK'p&l 0+YaS'(V')4'+-'c'a'~S(P)~'-~V' nk, S-'(0') =dS/dp,

is supersymmetric when c =1. Here, P is a two-component Majorana spinor and p is a real spinless
boson field; S(p) is an arbitrary function of p.

The purpose of this paper is to examine the strong-coupling lattice expansion of such a theory. Clear-
ly, since Lorentz symmetry is broken on a lattice, so is supersymmetry. However, we show that when
S(p) is an odd function of p, the supersymmetry is restored in the continuum limit. We demonstrate
this by calculating the ground-state energy density &, as a sequence of extrapolants and showing that
as c- 1 each term in this sequence approaches zero. We interpret this result as a signal that super-
symmetry is restored. The connection between the vanishing of the ground-state energy density and
the preservation of supersymmetry is discussed in detail by Witten. '

We calculate the ground-state energy density &, from the vacuum persistence function & written as
a functional integral:

& = fD+Dj exp(- fd'x Ls). (2)

If Z is properly normalized, ' then it can be written as

& = exp( —VE,),
where V is the volume of the two-dimensional Euclidean space (V = fd'x).

Following the usual Lagrangian strong-coupling expansion approach' we separate off the kinematic
terms in &:

0z= p d* dy —,
~

~i'*ii(* —y)
I ~

.,
~

~i„v„*iig-y) ) iv,

where

6' = fDVDg expfd'x f- 'gS'((p)tg—g —yc'p, [S((P)]'+Jq + riff.

We evaluate i4' by introducing a two-dimensional square lattice:

N N

fd'x-a +;, fD p- g f dp;/(2&)"', JDy- g a 'fdic, , V =Ra', (6)

where a is the lattice spacing, N is the number of lattice points, and p; is the value of p(x) at the ith
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lattice point x;. On the lattice ~'has the form

W =II,. a '(2//) "'
fdic J „d@exp(a'[ ~gS'(q)0% —zc'g'[S(y)]'+& q +qg]).

We evaluate the fermion integral in (7) using the usual Grassman rules and obtain

W=II; a (2//) "'f„dp S'(p) exp(pq;[1/a'gS'(y)] q; —~c'a'g'[S(cp)]'+J;ya'),

where we have used

fdic exp(- ~PAP) =[Det(/1)]"' =A.

For simplicity we specialize to the case

S =p"" 4 integer,

(7)

(8)

although our conclusions hold when S is any odd function. The integral in (8) can be simplified by us-
ing l dp =2j, dy. Note that only the even part of exp(J;ya') contributes to the integral and so we must
replace exp(J;pa') by cosh(&&pa'). Next, we make a change of integration variable:

agS(y) =y. (10)

The result is

W =II;(2/~)"'J dy exp[- 'c'y'+(4|,'+2) 'q;q;a '(ag) " '""'y '"' ""' ) cosh[&;(y'/ag)" '"'"a']. (1l)

x —(ag)- 1/(2k +1) (12)

The usual strong-coupling procedure is to ex-
pand the integrand in (11) as a series in powers
of the dimensionless small parameter

~ ~e are not concerned with the specific choice for
the boson and fermion lines. Any definition gives
a series for the connected graphs of the form
N+„,d„x". Thus, on the lattice E, has the form

and then to integrate this series term by term in
y. We obtain an expansion for ~' having the form Eo =a 2(inc —Qd„x") =gx4" '2 Q e„x',

n= 1 n=p
(16)

W =II (c ' y Q b „x"),
i n= g

(13)

W =exp[N ln(c ') + Q(vertices)]. (14)

Comparing (3) with (4) and (14) gives the graphi-
cal expansion for the ground-state energy density

-Na'E, =Nln(c ') +Q(connected graphs). (15)

where the coefficients &„depend on q;g; /a and
a J;.

It is important to point out that the first term
in the series (13) for an ordinary field theory con-
tains the parameters g and a. For example, for
the anharmonic oscillator, the first term is'
27/"'a3/'g"'I' (-,'). The special structure of this
mixed fermion-boson theory on the other hand
gives rise to the numerical constant 1/c, inde-
pendent of any dimensional parameters in the
theory. It is crucial for the vanishing of the
ground-state energy that the leading term in (13)
approaches unity as the continuum theory be-
comes supersymmetric (c-1).

The (connected) vertices for the lattice dia-
grams are obtained by expanding the logarithm of
(13):

where e, = ln& and e„=—d „, e - 1.
It is necessary to extrapolate the series in (16)

to the continuum. The continuum limit a - 0, x- ~, is performed by converting (16) into a se-
quence of extrapolants Q„which converge to the
continuum value of Ep." The Ãth extrapolant for
any series of the form

1s

x"ge„x"
n=p

q p
- ~/// (17)

where i'z~ is the coefficient of x" in (Q„,e„x")"' .
It is easy to show that if e, -o then Q& in (17)

approaches zero asep" . Thus, for all &, we
conclude that the Nth extrapolant to E,/g' in (16)
vanishes like (inc)4' as c —1 (the supersymmet-
ric limit). '

In summary, we have easily obtained the result
that E, =0 by taking a supersymmetric limit (c
-1) of the nonsupersymmetric theory of (1).
(Because of our choice of limits we obtain the re-
sult that supersymmetry is restored in the con-
tinuum without ever specifying a particular lattice
version of the fermion inverse propagator. ) Had
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we interchanged the limits a —0, c —1 and started
with the c =1 theory we would have found that the
continuum extrapolants were all nonzero. To
actually do such a calculation we would have to
choose a particular method for treating lattice
fermions. We believe, on the basis of our earlier
work (Ref. 7), that the resulting sequence of ex-
trapolants will converge to zero slowly. The
best way, in that case, to show that the ground-
state energy density vanishes is to show by direct
calculation that the critical index for the lattice
series is positive.
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