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At zero temperature SU(2) and SU(3) gauge theories confine quarks and spontaneously
break chiral symmetry. At some nonzero temperatures T, (&I) these gauge theories
lose confinement (chiral symmetry breaking). The order of these phase transitions and
the relation between &, and 1'&- have been studied with use of simulation methods which
neglect internal fermion loops. For SU(2) both transitions a.re second order and 1 ~Tz/
T & 1.20. For SU(3) the transitions are first order and 1~~Tz/T ~~1.05, with T, = 200
Me V.

PACS numbers: 11.15.Ex, 05.50.+q, 11.30.Jw

It is generally agreed that much can be I.earned
about the interactions between elementary par-
ticles by studying them in unusual. environments.
In order to understand quantum chromodynamics
better, we are engaged in a study of lattice gauge
theories at different length scales, at variable
temperatures, and in environments rich in bary-
on number. ' It is the purpose of this Letter to
discuss some computer simu1. ation results in
SU(2) and SU(3) gauge theories at finite tempera-
ture.

These gauge theories confine quarks at zero
temperature and they break chiral symmetry
spontaneously. ' However, at high temperature
the gauge theories have neither property. There-
fore, they experience two phase transitions in the
intermediate temperature region. It is natural. to
wonder if these two transitions are intimately re-
lated. In a previous Letter' we presented evi-
dence that for SU(2) theories with quarks in high-
dimensional. representations of the color group
the chiral-symmetry-restoring temperature is
many orders of magnitude l.arger than the decon-

fining temperature. We conclude, therefore, that
if a theory has sufficiently strong short-distance
(single-gluon) attraction between quarks and anti-
quarks, then chiral symmetry can be broken even
in the absence of confinement. Here we wish to
address simiI. ar questions in more quantitative
detail with quarks in the fundamental representa-
tion of the gauge groups SU(N). We will consider
SU(2) and compare with the physically relevant
group SU(3). The questions we pose are the fol-
lowing: (1) Are the short-distance forces in
these theories sufficient to break chiral. sym-
metry, or is confinement necessary'? (2) What
are the orders of the chiral-symmetry-restoring
and deconfinement phase transitions in each the-
ory~ To answer these questions we ran computer
simulations at finite temperature and measured
the deconfinement temperature T, and the chiral-
symmetry-restoration temperature T~ in a single
computer simulation. Since various measure-
ments reported in the literature are not in agree-
ment, ' we fel.t that another, independent meas-
urement of T, was necessary. For SU(2) we
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found that the T~ is very close to T, , 1 « T~/T,
~ 1.30, and the transitions could be coincident.
For SU(3), we found that T~ and T, are almost
certainly coincident, 1-T~/T, ~1.05. The phase
transitions for SU(2) appear to be continuous,
but for SU(3) clear discontinuities in the order
parameters were observed both the chiral-sym-
metry-restoring transition and the deconfinement
transition appear to be strongly first-orden transi-
tions. Our resul. ts imply that when quantum
ehromodynamies is heated above T, both the
string tension and the dynamical quark masses
vanish discontinuously. '

Why should the finite-temperature transitions
be qualitatively different in SU(2) and SU(3) gauge
theories. At high temperature one expects SV(N)
gauge theories to resemble three-dimensional
spin systems. ' The deconf ining phase transition
breaks a global Z(N) symmetry. " Therefore,
the SU(2) transition should be in the same uni-
versal. ity class as the three-dimensional Ising
model. It has a second-order transition. How-
ever, the SU(3) model should resemble a, three-
state Potts system. ' Computer simulations' and

1/N expansions' suggest a first-order transition
here.

Now consider our calculations. The gauge fiel.d
degrees of freedom are SU(N) unitary matrices
which are placed on the l.inks of a four-dimen-
sional Eucl. idean lattice. The fermions are rep-
resented by complex valued fields having N color
indices and residing on the sites of the lattice.
We use a lattice fermion action which couples
only nearest neighbors together and which pre-
serves remnants of chiral symmetry. The rem-
nants include a continuous subgroup and various
discrete elements of the familiar continuous
group of chiral transformations. " These features
of our lattice fermion method allow us to study
spontaneous symmetry breaking and the Gold-
stone mechanism on the lattice. We do this by
computer simul. ation methods which neglect in-
ternal fermion loops. ' We hope that this approxi-
mation, the quenched or Nz —0 limit (N&, number
of flavors), is an adequate starting point to study
the physics questions we pose. With this approx-
imation, the computer simulation strategy is
straightforward generate a gauge fiel.d configur-
ation at a certain coupling g', solve for the
quark propagator in that configuration, and re-
peat this process so that one can average the
quark propagator and gauge field matrix elements
over many gauge field configurations. We ob-
tained the quark propagator by the conjugate-
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gradient iterative procedure. " Typically, we
made 75-150 calcul. ations of the quark propagator
in a sample of 3000 gauge configurations at each
value of g'.

To study the ehiral phase structure of these
models we computed (|ttg) from the fermion prop-
agator. " The confining phase structure was
monitored with the expectation value of the Wil-
son line 8',

p ="N/161r' p ="N'/(167r')' (3b)

in SU(N) gauge theory without internal fermion
loops. To set the scale in Eq. (3), one can write

(4)

where C is a dimensionless constant and Kv is
the zero-temperature string tension of the model.
One uses Eqs. (2)-(4) as follows. The order pa-
rameters (gg) and W are computed as functions
of g' on a given N, &&N' lattice. The couplings
where (PP) and W vanish are measured and if the
coupling lies in the scaling region of the theory

where U„(n) is the SU(N) matrix on the link n - n

+ p, and the contour C is over a path of timelike
links which transverses the entire width of the
lattice. The path is closed by the periodic bound-
ary conditions imposed on the gauge fields. Phys-
ically, the matrix element Eq. (1) represents
the presence of a static quark interacting with
the gauge fields. For SU(2) gauge theory the ab-
sol.ute value of the Wilson line is essentially the
exponential of minus the excess free energy in
the system due to a heavy quark. ' So, in the con-
fined phase the Wilson line is zero and in the de-
confined phase it is not. For SU(3) the Wilson
line has a Z(3) symmetry. In that case one must
project 8' against the nearest cube root of unity
and use the real part of the result as a measure
of the static quark energy. "

Finally, recall how finite temperatures are
simulated. One considers an asymmetric l.at-
tice, N, &&N', with the width in the "time" direc-
tion related to the physical temperature T,

(2)

where a is the l.attice spacing, and the size of the
box N should be much larger than N, . The tem-
perature should scale according to asymptotic
freedom at weak coupling,

aT ~ (P,g') & 0 exp(-1/2P, g'), (3a)

where
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FIG. l. ($P) and W vs P =4.~g2 for SU(2) gauge theory
on (a) 2&8 and (b) 4x8 lattices. The curves are
meant to guide the eye; they are not precise fits.
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FIG. 2. (44) and W vs P =6/g' for SU(3) gauge theory
on (a} 2x8 and (b} 4x 8~ lattices.

T = (0.46 + 0.10iu o = (0.93 + 0.10)A (5)

So, if Ko-= 450 MeV as usually assumed, " then
T, = 200 MeV.

We have developed additional evidence for the

Eqs. (2)-(4) are used to predict the critical tem-
peratures in physical. units. The simul. ations are
run for different values of N, (2, 4, and 6) which
permits the scaling law Eq. (3) to be verified ex-
plicitl. y.

Now consider our resul. ts in Fig. 1. We show
plots of (Pg) and W for the gauge group SU(2) on
l.attices having N, =2 and 4 with N = 8. Both order
parameters appear to vanish continuously. " Us-
ing Eg. (3), we infer that the difference in coup-
lings at which W and g() vanish, b, p ~ 0.10, im-
plies a ratio of temperatures 1 ~ T~/T, & 1.30."
We also have data on lattices with N„= 6, and the
N, = 4 and 6 data satisfy asymptotic freedom, Eq.
(3)~ Our measurement of T~ agrees with our
earlier data, ' and our measurement of I, is
closer to that reported in Ref. 3 than that of Ref.
4 which we accepted previousl. y.

Now consider the analogous SU(3) data present-
ed in Fig. 2. Both the chiral-symmetry-restoring
and deconfinement transitions are very sharp and

suggest a strongl. y first-order transition. Note
that g() varies from 0.324+ 0.015 at p = 6/g'
=5.125 to 0.023+0.015 at p= 5.150. According to
Eq. (3) this change in P, b. P =0.025, corresponds
to a fractional. change of temperature of only 3 k.
The ratio of the critical. temperatures is very
near unity, 1 ~ T~/T, ~ 1.05. One can verify that
the N, =2 and 4 data are in good agreement with
asymptotic freedom. We also have data at N, =6
which are consistent with asymptotic f reedom.
Comparing with string-tension calculations, we
find
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FIG. 3. W vs Monte Carlo sweep number for SU(3)
gauge theory on a 2 x 83 lattice. Both curves have iden-
tical disordered starts; the lower curve is at P =5.075
and the upper curve is at P =5.125.

first-order character of these transitions by find-
ing evidence of coexisting states, hysteresis,
and metastability in long simul. ation runs. In
Fig. 3 we show W as a function of Monte Carlo
sweep number for P = 5.075 (lower curve) and

P = 5.125 (upper curve) with both runs beginning
with identical hot (small P) gauge configurations.
The sharp difference between the two runs and

the lack of large ftuctuations is evidence for a
strongly first-order transition. Note in Fig. 3
that the first 600 sweeps through the lattice at P
= 5.125 do not reach equilibrium although the
SU(3) program used was a standard Metropol. is
routine in which 20 hits were made per link on
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each sweep. We, therefore, discarded typicall. y
500-600 sweeps in our runs before taking aver-
ages of Pg) and W.

We find our SU(3) results particularly intri-
guing. We hope to investigate the thermodynamics
of the transition further in the near future.
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