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Propagating Pattern Selection
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Pattern selection is discussed in regard to a situation where a stable, nonuniform state of
a nonlinear dissipative system propagates into an initially unstable, homogeneous region.
The velocity of the propagating front and the wavelength of the pattern formed behind the
front are determined by a marginal-stability criterion. The special system studied here
has a I,yapunov functional, but the periodic state which propagates is not the one which min-
imizes the functional.

PACS numbers: 05.70.Ln

Development of a meaningful theory of natural
pattern selection requires models of pattern-
forming mechanisms that are simple enough to
be understood in detail. Real systems are in-
trinsically complex and exhibit a variety of re-
sponses to differing experimental situations. One
would like, for example, to predict the periodici-
ties of Rayleigh-Benard convection patterns, ' of
cellular solidification fronts, ' cellular flame
fronts, ' etc. The basic difficulty is that the
steady-state descriptions of each of these systems
admit whole bands of linearly stable states; yet,
at least under some conditions, unique states are
selected in real experiments. It will ultimately
be important to understand whether, or under
what circumstances, pattern formation in such

, systems is an intrinsic property of the systems
themselves or, perhaps, depends sensitively on
initial configurations, boundaries, or externally
imposed perturbations. '

A particularly striking example of the pattern-
selection problem occurs in the theory of dendri-
tic solidification. " In this case, it appears that
the naturally selected states are those which sit
just at the margin of instability. Although quali-
tative arguments have been advanced in favor of
this principle of marginal stability, no systematic

derivation has been discovered.
The first group of pattern-forming phenomena

mentioned above has the common feature that
periodic structures are emerging in translational-
ly symmetric systems. A particular mechanism
for pattern formation in such systems, which we
shall call "pattern propagation, " has some simi-
larity to the dendritic process. ' Consider an
initially structureless system which is "quenched"
so that it becomes uniformly unstable against
pattern-f orming deformations. A perturbation
which at first is confined to a small region will
grow locally into a well developed pattern~on-
vective rolls, cellular structures, etc. and this
pattern will spread out into the rest of the space.
This pattern may spread by propagating at a well-
defined velocity, the front of the pattern looking
much like the tip of a dendrite which generates
an array of side branches behind it as it moves.
A picture of such a pattern front is shown in Fig.
1. The crucial questions are the following: What
is the speed of the front? What is the wavelength
of the pattern which is stabilized behind this
front?

An instructive example is a nonlinear diffusion
equation which has been much discussed in the
literature of mathematical biology. ' " We shall
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FIG. 1. Fro
X

mined by Eq. 4 «« =
Front portion of a propagating att r dpa em eter-

y q. ( for e =0.9. The oscillatory part of
the pattern on the left is stationar in the l b
rame, and new oscillations arise as the envelope of

the pattern moves to the right. Inset: the local wave
number k as a function of x fo thr e entire system.

consider at first only a specially symmetric ver-
sion, viz.

sU/si = 8'v/sx'+u —u' (1)

which is also well known in the ph 1'tp ysics i erature
as a model for phase transformations. Stable
states of this system occur at v =+ 1
stabl

a v=+, and an un-
s a e state at v=0. The situation f ' terest
is one in which the unstable state v =0 is trans-
formed into say, = I at a front moving at speed
c. This steady-state front must be described b

of
=x —ct, which is a solutioion

0 = &v, /sx" +c &~, /W'+ v —o '
C C

with the boundary conditions v, -1 at x'- —~
vc -0 at x'-+ C

Solutions of ~2& exist for all positive values of c.
To see this, note that (2) can be interpreted as
the mechanical equation of m t' fo ion or a particle
of unit mass whose "displacement"

ime ' x'. The particle is undergoing
damped motion with damping constant c in a o-an c in apo-

——,v, . he relevant trajectories are
those in which the particle starts 'th zero speed
from the potential maximum t, = Ium a vc= 1 and falls to
the minimum at v = 0. For & 2 thC c, e motion is
overdamped, and the fronto, v, ~~x j is monotone de-
creasing. For the underdamped ease, c & 2, the

es =0
forward part of the front oscillateci a es as it approach-
es v, =

A defin'initive mathematical discussion of Eq. (1)
has been published by Aronson and Neinber er '

who prove that all initial states v(x, t = 0) which
lie within the strip 0 - v -1 which, w ich o not vanish
everywhere, and which decrease at least f t

in e +x direction will form propagating
fronts with c =2. That is the bi, e asin of attraction
or the state v is, is overwhelmingly bigger than

that for any other and in, in particular, contains all
the physically achievable initial per turbations
which are of bounded exte t Thn . is, then, is an
example of a sharp selection mechanism

This selected state is marginally stable. The
term "stabili " isi i+~ is used here in just the same

reference movice moving with the front and ask whether
in e rame of

an initial 1 locy ocalized perturbation, observed at
a fixed point in that frame 'lle, wi grow or decay.

perturbation which decays isays is considered stable
even if it generates a growing disturbance like
a sidebranehe, which moves away from its point

the st
of origin near the tip. The d t 'l de ai e analysis of

e stability spectrum for Eq. (1) will be pub-
ished elsewhere. For pre tesen purposes, we

shall use an intuitively appealin buting u over simpli-
ie pic ure which we shall prese t

that it can be applied to a d

sen in such a wa
o a wi er class of models

than that described in Eq. (1).
Consider a localized pert b tur a ion imposed on

an otherwise uniform unstable s stem
small dis uisturbances, we can linearize the e ua-
tion of motion m

ize e equa-
ion, make a Fourier transfo t'rma ion,

obtain a dispersion relation for the
tion rate e as a

'
n or e amplifiea-

e ~ as a function of wave number k. After

fro
a long time t, and at a larg d te is ance x away

e perturbationrom the initial disturbance th
will have the form exp[it*x+ (k*x + ~ 'tf, where 4*

lane.
is e point of stationary phase in thein e complex k

p ane. If we observe this perturbation at a mov-
ing position x =ct, then we should be a
choose c lar

ou e able to
c arge enough that we outrun th

bation, that h

n e pertur-
a is, we should see a decaying expo-

nential in time.e. 'n this sense, c is a stabilizing
parameter. The marginal- t b'l'
is simply the conjecture that the natural veloci

, c, is at for which this
exponential neither grows no dnor ecays. Ther efore
c should be obtained by solving

ic*+dcu/du*=0; Re1ic*a'+su(e*)] =0

Note that this analysis works cor tl tree y o give c*
when &u = 1 —k' as in the case of Eq. (1).

A much more interesting case to consider is
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the equation

&u/&t = [e —( s'/Bx'+ 1)']u —u', (4)

Here, & is a control parameter introduced in
such a way that the state u =0 becomes unstable
when ~ becomes positive. The restabilized sta-
tionary solutions of (4), for any fixed e in the
range 0 ca ~1, are periodic functions with funda-
mental wave numbers k occurring in bands of
finite width in the neighborhood of k -1. For
small e, (4) can be approximated by an amplitude
equation by writing

u(x t ) =- (-' e)"W(X T)e i"+ (-' e)"W+(X T)e
- '"

l.05

l I

0-I 0.2 DX

where X = 2E x and ~= EI,. Then the amplitude
W satisfies

BW/BT= & W/BX +W —
i Wi W+O(e ). (6)

This is the same as (1) except that W may be
complex. There are strong reasons for believing
that localized initial conditions must evolve ac-
cording to (6) into propagating states in which
the phase of 8' becomes very nearly constant,
so that the theorems of Aronson and Weinberger
are applicable. This leads to the prediction tha, t,
to lowest order in c, c*= 4&' '. The correspon-
dence between (4) and (1) via the amplitude Eq.
(6) does not prove, but makes it plausible, that
pattern propagation in this more complicated
model occurs at a sharply defined speed.

The simplified marginal-stability theory sum-
marized in (3) may be used to compute the func-
tion c*(e) throughout the physically interesting
range (0&a&1) by setting &u(k) =e-(k'-I)'. The
results are shown in Fig. 2. This theory may
also be used to predict the wavelength of the pat-
tern which emerges behind the front. In doing
this, it is helpful to look at the wave form in Fig.
I, which is a computer-generated solution of Eq.
(4) for e = 0.9. The fully developed pattern has
a, wa.ve number k, and is stationary in the fixed
frame of reference. Alternatively, the pattern
may be visualized as moving with velocity -c*
in the frame of reference in which its envelope
is at rest. Ahead of the front, the pattern is pre-
dicted by (3) to have a wave number Rek* and to
be oscillating at a fixed point in the moving frame,
with an angular frequency

0 =—Im[ik*c *+u(k *)]. (7)
This frequency may be interpreted as a flux of
nodes moving in the -x direction relative to the
envelope. As long as nodes are not created or
destroyed when they pass through the front of the

to 6
FIG. 2. Scaled velocity c*/4+e as a function of the

control parameter e. Inset: the extrapolation to van-
ishing grid spacing used in estimating q* for e =0.9.

pattern, this flux must be conserved and must be
equal to k,c* in the bulk. Thus, we predict

k, = Q/c*. (6)
For example, for a=0.9 we find c*/e' '=4.546,
Rek*=1.1758, A=4. 643, and k, =1.076.

These predictions for c* and ky have been
checked by direct numerical solution of Eq. (4).
Our procedure is straightforward; we start with
a localized perturbation and watch it evolve as
shown in Fig. I. Our results for the propagation
speed are 'generally consistent with the predicted
c (e) shown in Fig. 2. The inset in that figure
shows measured values of c for ~ = 0.9 at three
different grid sizes, with our proposed extrapola-
tion indicated by the dashed lines. The error
bars indicate only the scatter in our data and not
any estimate of systematic error, except that
the bar for the point at the smallest grid size is
skewed because the speed of the front seemed
still to be increasing slowly at the end of this
run.

The inset in Fig. I shows the local wave number
k as a function of x for the entire system whose
front is shown in the main part of that figure.
Note that the wave number in the body of the pat-
tern has settled down accurately to.the predicted
kg Ahead of the front, k passes thr ough Re@*
and the amplitude of the wave form decreases
rapidly. The variation of k near x =0 is a vestige
of the initial transient which has been trapped
behind the front and is slowly disappearing diffu-
sively. One of the reasons that we must use long
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computer runs to evaluate c is that we must allow
enough time for the front to become well sepa-
rated from this transient.

The results of this investigation are encourag-
ing in the sense that we seem to have found a
sharp selection mechanism which is an intrinsic
property of the system, independent of detailed
initial conditions, boundary effects, or external
perturbations. On the other hand, these results
are discouraging to hopes of finding universal
selection criteria. In the first place, the mecha-
nism described here depends only on linear prop-
erties of the unstable part of the system, and we
know that this cannot be true in general. For
example, the addition of a term of the form v'
to the right-hand side of (1) invalidates the simpli-
fied version of the marginal-stability hypothesis
summarized in (3). It turns out that marginal
stability is still correct, but the instability which
controls the speed of propagation is a localized
deformation of the front which appears only in
the fully nonlinear analysis. We do not know
under what circumstances such a nonlinear effect
might occur in a pattern-forming model like (4),
but we see no reason to exclude this possibility.

An even more serious point to recognize is that
there exists a Lyapunov function E(uj for Eq. (4),
and that the selected wave number k, is not the
one which minimizes I'. That is, given reason-
able boundary conditions of the kind used here,
we can write (4) in the form

Bu/Bt = —5E/5u,

dX ~ +2 1 —CQ +gQ

(9)

and note that dE/dt-0. For a=0.9, E has its
absolute minimum at the stationary state with
fundamental wave number k =0.998, which differs
from k, =1.076 by an amount which is well beyond
our numerical uncertainty. Thus, patterns which
form by propagation will not be the same as those
which are most stable in the presence of, say,
thermal fluctuations.

Finally, we remark that both k, and Rek* lie
well within the band of stable stationary solutions

of (4). The Eckhaus instability, where the phase-
diffusion constant for the bulk pattern vanishes,
occurs at k = 1.25 for e = 0.9. Thus, the selected
wave number in this case definitely does not oc-
cur near a marginal instability of the bulk pat-
tern, as has been suggested in another context. "
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