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Temperature-Dependent Susceptibility in the Anderson Model and its Universality
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A Green’s function which is asymptotically exact in the Kondo regime is presented. The
temperature-dependent susceptibility of the Anderson model is calculated from this Green’s
function and is found to be in excellent agreement at all temperatures with the results of
renormalization-group theory. The formalism presented suggests a microscopic physical
mechanism for the scaling and universality of the thermodynamic properties found in renor-

malization-group theory.

PACS numbers: 75.20.Hr

We present a Green’s function for the Anderson
model® which satisfies the Baym condition? for
the macroscopic conservation of momentum, en-
ergy, and number of particles and which is asymp-
totically exact in the limit of small mixing param-
eter V between the impurity d state and the host
conduction band. The resultant calculated mag-
netic susceptibility is in excellent agreement with
the results of renormalization-group theory®
(hereinafter referred to as RGT) for all tempera-
tures. Furthermore, our formalism suggests a
microscopic physical mechanism for the scaling
of the parameters of the model and, being based
on Green’s functions, offers a more immediate
physical interpretation and perhaps a more im-
mediate extension to other more realistic models.

Recently, the Anderson Hamiltonian has been
formally diagonalized.* Also, recent calcula-
tions®'® of the thermodynamic properties of the
Kondo Hamiltonian based on the Bethe Ansatz
have given excellent agreement with RGT. How-
ever, these calculations, being numerical, do
not reveal the physical mechanism responsible
for the scaling. How the temperature dependence
of the susceptibility comes about in the Anderson |
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model is not known. There exists only the con-
jecture that a central peak at the Fermi level is
somehow responsible.”

We calculate the Green’s function by applying
the functional derivative method developed® for
the Hubbard model. Two-particle Green’s func-
tions, I', involved in the equation of motion for
the d-electron Green’s function, G, are replaced
by functional derivatives 6G/5V with respect to
arbitrary external fields, 6V, which transfer d
electrons to conduction-band states, %2, and vice
versa:

T(t')=56G(tt')/dV(t)+G ()G (tt').

If 5G/8V is neglected, the resulting G, is identi-
cal to that obtained under decoupling approxima-
tions. If 6G/8V is evaluated iteratively starting
from G,(ft’), under the assumption that the
equal-time Green’s function G’(¢¢) is independent
of 6V, all possible diagrams in powers of V2 can
be generated.® On the other hand, if G'(#¢) is in-
dependent of 6V, the original functional differen-
tial equation is reduced to an ordinary differential
equation which can be solved exactly by a power-
series expansion. The resultant Green’s func-
tion given by

has three principal peaks, with the lower and up-
per peaks approximately at the energies w, and
w, respectively, and a central peak associated
with the energy w, approximately at the Fermi
level. The energies wp, w,, and wy are associ-
ated with additional peaks to be discussed, the
equal-time Green’s functions (N, and (N,5 are
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equal to the occupation numbers n,, and n,3, re-
spectively, in this approximation, and

S(w):z;klvdk|2/(w—€k)’

where €, is a conduction-band energy. Although
this result corresponds to the exact sum of all
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possible diagrams in many-body perturbation
theory, it is divergent. For example, the formu-
las for w, and wp involve terms of the form
(c;57C,
Z? (V+8V),, ————‘1~—5—————[de> —N, ] +H.c.
which diverge because n,5=n1,,.

The G,4(w) obtained above is, of course, not a
self-consistent solution; when G is inserted into
the original equation, 8V operates on equal-time
Green’s functions, (N,.», etc., yielding new
types of terms. We can, however, expand the
N,s7, ete., involved in G (w) in powers of 6V
and determine the coefficients of the first deriv-
atives in such a way that G is a self-consistent
solution, provided second- and higher-order
derivatives are neglected. This results in a re-
normalization of the N,,r so that

Ny =ngq0+®  do’) (2)

in the expression for G,,(w).®? The first-order
corrections @ ,(do) and ® ,(do) to n,, and n,5 are
distinct and thus eliminate the divergences dis-
cussed above, yielding a renormalized and well-
behaved G,,. These corrections are of order
(VZ/DU)1/3, where D is the conduction bandwidth
and U is the strength of the intra-atomic Coulomb
interaction. If one were to extend the calculation
one step further by evaluating second derivatives,
the resultant second-order corrections would be
of second order in (V2/DU)Y3, Hence, the first
corrections are necessary in order to avoid di-
vergences, but higher-order corrections are
small in the Kondo regime. Thus, the Green’s
function given by (1) and (2) is asymptotically
exact, satisfies all conservation laws, and within
errors of order (V2/DU)?”® is self-consistent.

Unfortunately, the solution of Egs. (1) and (2)
together with the associated self-consistent equa-
tions for the renormalization functions @ (o)
and @ ,(d0) and the energies w,, w,, Wy, Wp, Wy,
and w, is next to impossible by only iterative
methods. However, the correct self-consistent
physical solution to these equations can be found
by physical insight and further formal analysis.
We propose on physical grounds two essential
characteristics of any correct solution and de-
scribe a self-consistent three-peaked Green’s
function which possesses those characteristics,
gives a minimum in the free energy lower than
that given by a simple two-peaked function, and
gives the correct susceptibility.

The energies w, and w, in Eq. (1) lie approxi-
mately at the lower and upper peaks of the d-

electron spectral-weight function, A, (w); wg,
wp and either wy or w, lie between w, and w,,
with the other energy, say w,, lying either below
w, or above w,. The three energies, w'®’, w®’,
and w'®’, which give the exact positions of those
peaks in A, ,(w) which lie between w, and w, can
be calculated from the zeros of G,,”*. Upon de-
fining 6y =wp — w, and 3(6 —y) =w, — wy, One can
rewrite Eq. (1) in the dimensionless form

[w—awx}{w—wg—Gyjl[w-wK—;(y—O)]

—-i[X], (3)

where
lw=(1 =NV
w=w)(w=-w)(w=-w,)

- ix(w)=S(w) (

and S(w) is purely imaginary for the symmetric
Anderson model.

In general, the imaginary parts of the roots
w® WP and w®) are of order (V2/DU)Y3;
however, if x(w)/6°% is sufficiently small (s 1),
there exists some value of the ratio y/6 for which
one of the roots becomes real. We postulate on
physical grounds that one of the roots, say w®’,
should lie at the Fermi level, Re{w®’} =1, and
should be very nearly real at T=0. We then find
that the broad spectral peaks associated with the
other two roots are unobservable. Furthermore,
the reality of w‘®? fixes the value of v/ as a
function only of x(w)/6%. Self-consistency then
uniquely specifies the value of x(w)/6° and hence
that of /&, so that both are independent of V, D,
and U. Thus, Eq. (3) is completely scaled. This
scaling gives rise to the universality observed in
RGT. Because the form of Eq. (3) is unchanged
by including terms of higher order in (V?/DU)'3,
corrections to this universality must be of order
kyT/U or smaller.

The energy shift at T =0, AK =Re{w®} - w,
can be expressed as a rapidly convergent power
series in x(«)/28°,

AK(5) = - ﬁz‘ C,ly/8) (x/25%)", 4)

where the C,’s depend only on the fixed value of
/8, with C,~0.19. The actual self-consistent
value of /6 depends upon temperature, introduc-
ing a temperature-dependent width, Ag=a(T)k,T,
in the central peak. Assuming k7 «U,D and
postulating that the central peak must be pinned
at the Fermi level, one finds that the increase
with temperature of the free energy of the system
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is given by AE(T)=A(T) - A(0) with

dw 2A

AE(T):_ E,n,—(w_“)Z_{__AK

s KG (w,T)) (), (5)

where 6(w,T) is a slowly varying function of w with

8(,T)=067=0,+08,kpT +6,In{[1+a*T)]*%,T/D}. (6)
Here, the factor [1+¢?(T")]"? arises from the Lorentzian form of the central peak, and the In term
arises from the Kondo integral in such two-particle collision terms as

£ole) ” 11 des \delz le, — (A= (NDUI*"
i=1 27 v W= €, (€, —wi)(e,—wp)(€,~wa)le,—wp)

Ay O(u‘l)Adﬁ(wz)Adﬁ(ws)
W=w;twy—w;y

X

F((-Ul)F((—U3)[1 "f (€k )]y

which occur in the equations for the renormalization functions & j(do;w). Substituting Egs. (4) and (6)

into Eq. (5) and integrating, one finds

10¢ (T')

AE(T) =~ Cyl x/26T3|2{60 +8,'kgT + [52 370/

where
8, =6, —[106a (T )/ 3wy ] In[k,T /D]

and T, is the temperature at which the universal
curve of kyTX(T) vs In(k,T/D) has an inflection
point (the transition temperature between the
strong-coupling and localized-moment regimes).
We have found that the pinning of ¥’ at the Fer-
mi level, independent of temperature, is self-
consistent. Physically, this pinning is associat-
ed with the fact that the central peak arises from
two-particle collision terms.

Mathematically, it arises from the necessity
that the renormalization functions ¢ ,(d¢’) be
large compared to V2/DU in order to obtain self-
consistency. This condition, which is associated
with the rough inverse proportionality of the en-
ergies wy, wp, wy, and w, to the ¢ ,(do’), can
be satisfied only if the Kondo integrals in such
collision terms as ¢,(u) are large, hence, only
if w®) is at or very near the Fermi level.

Because the central peak is narrow and Lorentz-
ian, it should have the properties of a quasipar-
ticle peak; in particular, AE(T) should be very
nearly proportional to 2;7. In the low-tempera-
ture limit, T < T,, this yields the results «(7)
=T,/T, Ag=kyT, and 0,=10 kT, /37(y/0),
while in the high-temperature limit, 7 > T, (but
T <D, U), it gives «(7T)=1n10/In(7/7T,). That the
last term on the right-hand side of Eq. (7) must
be proportional to T implies that

la(T) = 7,/ TIn{(T/T)[1 + X T) ]2}

=1n10, (8)
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The condition AE(T) «<k ;T has been found to be
self -consistent.

We have proven rigorously that contributions to
the susceptibility from the lower and upper peaks
cancel exactly, and that the susceptibility is com-
pletely determined by the central peak according

to the formula
of (w)
,:_ dw } (9)

(1) :f dw 28,
(gup)?® Jow 21 (w=p)?+4,°
with A, = a(T) k3T determined from Eq. (8).
Equations (6), (8), and (9) thus determine T,

and X(T/T,), and hence Ty /T,, where Ty, the
Kondo temperature, is defined by the equation,

0-07(gHB)2,

as in RGT. Because of our assumption that T

«< U, D in Eqgs. (5) and (9), we obtain a universal
eurve for x(7/7,) and hence a universal value
Tk/T,=0.65. Our results for k3 Tx(T) as a func-
tion of T/T, are in excellent quantitative agree-
ment down to 7/7;~0.1 with the results of RGT
as is shown in Fig. 1. However, we find kg T x(T)/
(gwp)? to approach the constant value 77! in the
low-temperature limit, as compared with the
value 0.15 found numerically by RGT. Our re-
sults for 7, (or Ty) are obtained with much less
precision, but they are in agreement with the re-
sults of RGT within their quoted uncertainty. For
U=107°D and the two values 0.064 and 0.8 for
pJerr =8p| VI2/ U, RGT obtained k7 =3.7x107'2D
and k3T ~0.6x107*D; we obtained kT ~2.5
x107'2D and kT ~0.6x107*D, respectively.

By Tux(Tx)=
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FIG. 1. The universal function kgT x (T)/(gps)? as a
function of T7/T,, where T is the temperature at
which the function has an inflection point. The dots
show the values found in this paper for the Anderson
model; dashed curve shows the results of RGT for the
Kondo model. The arrow indicates the value of the
Kondo temperature as defined by RGT.

In summary, physical reasoning has led us to
postulate two basic properties for any physical
Green’s function for the Anderson model: (1) the
existence of a sharp central peak in 4,,(w) at
the Fermi level and (2) a quasiparticle-like de-
pendence on temperature of the free energy, A(7T),
associated with the central peak. A Green’s func-
tion having these properties has been constructed
self-consistently, with use of the condition of
minimization of the free energy as an aid in its
calculation. The Green’s function found is asymp-
totically exact in the Kondo regime and yields a
temperature -dependent susceptibility in excellent

quantitative agreement with the results of RGT.
The Green’s function constructed gives rise to a
spectral-weight function, A,,(w), which has only
three observable peaks, the very narrow central
peak at the Fermi level and the usual two peaks
approximately at €, and €,+U, The width of the
central peak varies from 1.6 23Tk in the low-
temperature limit up to 2571n 10/In(7/1.6 Tk)

at high temperatures. Both the pinning of the
central peak and its width can be understood
physically and mathematically in terms of the
collision processes which give rise to it,

A complete mathematical derivation of the re-
sults given here and a more precise specification
of the Green’s function, G,,, will be given else-
where,

'P. W. Anderson, Phys. Rev. 124, 41 (1961).

’@. Baym, Phys. Rev. 127, 1391 (1962); G. Baym and
L. P. Kadanoff, Phys. Rev. 124, 287 (1961).

H. R. Krishna-Murthy, K. G. Wilson, and J. W.
Wilkins, Phys. Rev. Lett. 35, 1101 (1975); H. R.
Krishna-Murthy, J. W. Wilkins, and K. G. Wilson,
Phys. Rev. B 21, 1003 (1980). These papers will be
referred to as RGT.

4H. U. Desgranges and K. D. Schotte, to be published.

P, B. Wiegmann, Phys. Lett. 80A, 163 (1980).

6V. T. Rajan, J. H. Lowenstein, and N. Andrei,
Phys. Rev. Lett. 49, 497 (1982).

'G. Griiner and A. Zawadowski, Solid State Commun.
11, 663 (1972), and Rep. Prog. Phys. 37, 1497 (1974);
also see J. W. Wilkins, to be published.

8T. Arai and M. H. Cohen, Phys. Rev. B 21, 3300,
3309 (1980); T. Arai, Phys. Rev. B 21, 3320 (1980).

L. P. Kadanoff and G. Baym, Quantum Statistical
Mechanics (Benjamin, New York, 1962).

381



