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Concentration Waves and Fermi Surfaces in Random Metallic Alloys
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On the basis of a new first-principles, electronic model for the forces driving clustering
and short-range order in metallic alloys, it is argued that observed concentration-dependent
peaks in the x-ray and electron diffuse scattering intensities are due to parallel sheets of
flat Fermi surface. The positions of the peaks are directly related to the spanning vector
k().

PACS numbers: 71.25.Mg, 71.10.+x, 71.25.Hc

It is often useful to describe inhomogeneous
fluctuations in the composition of random alloys
as incipient concentration waves (CW). This is a
particularly fertile view when the state of order
is dominated by a small number of waves with
wave vectors near specific points in the Bril-
louin zone, say%, and its star. "' For instance,
the ordered state can be thought of as a thermo-
dynamically stable CW modulating the disordered
state. ' In the disordered state CW's are not
stable but may be long lived. They describe the
short-range order (SRO) and dominant GW's are
directly observed as peaks at%, in the x-ray,
neutron, and electron diffuse scattering intensity
I(%), 6% being the momentum transfer. ' Of spe-
cial interest are the alloys, such as CucPd, c,
CucPt, c,' etc. , for which %o varies continuously
with the average composition C. In these cases
the Fermi surface is thought to play a role in
singling out some particular ko,

' which is, there-
fore, not correlated with the symmetry-induced
Lifshitz (special) points. '

The conventional argument is based on the Kri-
voglaz-Clapp-Moss (KCM) formula for the SRO
parameter a(k) = [1+C(1 —C)t3W(k)] ' where
W(%) is the lattice Fourier transform of a pair-
wise interchange potential" ' and 13 = (& RT) '.
Since I(k) is proportional to &(k) the diffuse scat-
tering experiments measure the shape of 8'(k).
The suggestion of Moss' is that &(E) can be cal-
culated in perturbation theory to second order in
the electron-ion potential and hence is propor-
tional to the one-electron susceptibility y, (k)
which can peak at 2, 's that connect parallel flat
segments of the Fermi surface leading to peaks
in u(%) and I(%) at%, . This would be an attrac-

tive picture since it is easy to imagine that the
Fermi surface, if it existed in a random alloy,
would be a sensitive function of C. However,
neither low-order perturbation theory nor the
assumption of pair potentials is likely to be ap-
plicable to systems with strongly nonspherical
Fermi surfaces. In this Letter we present an
alternative theory which is not subject to these
two objections.

It turns out to be straightforward to adapt the
density-functional approach for classical liquids
to a lattice-gas model of alloy configurations. '
The basic theorem is that, in the presence of an
external field H, ~ =g„v„(2$„—1), there is a
gr and potential

Q(T, Y, N, v, [C„])
=5~„v„(2C„—1) +E([C„]) —vZ„(2C„—1)

such that the internal Helmholtz free energy
E([C„])is a unique functional (independent of the
external potential v„) of the local nonequilibrium
concentrations C„= ($„). Here $„ is an occupa-
tion variable which is 1 (0) if there is an A (&)
atom on the nth site, and T, Y, N, and & are the
temperature, volume, number of unit cells, and
chemical potential difference ~(p —p, ), respec-
tively. The equilibrium configuration is specified
by the condition (&&/BC„)[C'] =0. Furthermore,
P is a minimum at [C„'] and equal to the thermo-
dynamic grand potential Q(T, V, N, v). The proof
follows the arguments in Ref. 6 and will be given
elsewhere. With respect to the variable u„=v
—v„,' is a generating function of a hierarchy of
correlation functions: nfl/8w„= 2C„,

"»». 8~. =+q.. =48(($.&. ) —((.)(&. )),
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etc. For a homogeneous system q(%) =C(1 —C)n(R)
is the lattice Fourier transform of q„„.

Although E is not known at this stage, it is use-
ful to break it up into a noninteracting part

I'O=P 'Z„[C„lnC„+ (1 —C„)ln(1 —C„)]
and an interaction function 4' defined by E =E, —@'.
It then follows that the [ C„'] satisfy

P-iln[C o/(1 C 0)] P -iS (i + 2(v„—v) =0,

(2)

where S„"'=p(84/BC„). Clearly, S„"'is a, self-
energy, i.e. , the contribution to the local chem-
ical potential difference v -v„due to all the in-
teractions. Note that Eq. (2) is a complicated
equation for C„' since S„' depends on all the
variables [C„].

With respect to the concentration variables, C'

turns out to be a generator for a new set of use-
ful correlation functions. The first is S„",the
second

S„„,&'' =as„"'/aC„, =P s'Il/sC„eC„, ,

and so on. To see the significance of S„„' take
the derivative of Eq. (2) with respect to C„.. The
result is

[ C„(1—C„)] '0„„—S„„"—su „/ 8 C„=0.
Noting that

su„/sc„=(sc„ /su„) ' =(2p) '(q ')„„i,
we may rewrite this relation, for a homogeneous
system, as

=[1—C (1 —C)S~2i(R)]

This identifies S1'~(%) as a close relative of the
Ornstein- Zernike direct correlation function for
our lattice model. ' For a model with pair poten-
tials, within the random-phase approximation
(RPA), S (%) =-P+'(k), which leads to the KCM
result. Here, however, Eq. (3) is exact and
S~ "(%) has been defined without reference to
pair potentials.

In the present concentration-functional approach,
the mean-field theory is to take 4'MF =- (lI([ $„])),
where angular brackets denote the average with

respect to the inhomogeneous distribution function
P([$„])=II„P„($„)where P„(1)= C„and P„(0)=1
—C„. For pair potentials this yields the RPA re-
sult for S~"(R) and Eq. (2) becomes the Bragg-
Williams equation of state. To go further one
must add to 4'MF fluctuation corrections. How-
ever, our aim here is to calculate the self-en-
ergy S„' and the direct correlation functionS„„'in the mean-field approximation on the
basis of electronic forces which cannot be repre-
sented as pairwise interactions.

In the adiabatic approximation 4'MF = —(H&l )
—(0, ) where Hli is the bare ion-ion interaction
and , is the grand potential of the electrons for
a specific configuration. In the density-function-
al theory for the electrons, , can be written as
a "band-structure" contribution ~~, ' plus correc-
tions for double counting. The latter can be
lumped together with H» and the result is a sum
over short-ranged, repulsive, pairwise forces
as in the phonon problem. ' In what follows we
shall confine our attention to the attractive long-
ranged forces governed by ~, '. We take the ef-
fective one-electron potential to be of the muffin-
tin form. We consider only two kinds of potential
wells characterized by the partial-wave scattering
amplitudes f»(e) and f~, (e) and assume that they
do not change during rearrangements. That this
is a sound basis for our present discussion fol-
lows from the success of Korringa-Kohn-Rostok-
er —coherent-potential-approximation (KKR-CPA)
method of calculating electronic states in random
alloys. ' Thus, following the lead of Ducastelle
and Gautier' in the context of tight-binding models,
we shall study (0, ') within an inhomogeneous
generalization of the KKR-CPA.

The coherent-potential lattice is described by
the effective partial-wave scattering amplitudes
f, „.Li ~ (e) (the index & designates quantities cal-
culated in CPA) which for an arbitrary [C„] are
off-diagonal in the angular-momentum indices I-
(=l,m) and are different on every site. They are
the solutions of the generalized KKR-CPA equa-
tion:

t, „-'=C„I,-'+ (1 —C„)t, '+(t„' —t, „')T'""(tR ' t, „'), -

where t, „, t~, and t~, are on-the-energy-shell" t
verse of the real-space KKR matrix

—Gii (R„—R„, e)

I
matrices (f = —e"'t) and Ti z

~" "" (e) is the in-
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with the usual free-electron structure constants G» ~ (R„—R„; e). The grand potential & is given
by —2I3J deN "(e)f(e). The stationarity of N with respect to variations in t, „'means that in
the disordered state (C„=C for all n)

= —I3 && "/&c„=2p fd&f (e)(intlDAII —InIIDRII),

where IID~ „ II (n =A, &) is the determinant of the matrix I I+ (t„'—t, „')r"""] ' in angular momen-
tum space. After a KKB-CPA calculation has been performed this is a simple formula to evaluate.
Its consequences for the equation of state, Eq. (8), will be discussed elsewhere.

To calculate S„„"we need to take another derivative of O . This involves &t, „'/8C„ for which
we can derive an integral equation from Eq. (4). In the disordered state the solution of this yields

S'" (t ) = I2t3/. n""(l ) j ~« &-(t ) j&(&)5k, .
~213I de f (g)Q'M (e)I I+y X (k, e)] 'X (%,e), (5)

LL

where the first term is due to changes in the chemical potential p. for the electrons, AZ is the valence
difference Z" —Z, n "(tt, ) =BN "/8lu, the matrix element

Mz
~
z'(e) =Dr (t A s,

' —t~ I, ')DI, Di, ' (tAIs, ' ' —t R~s, ' ')Dz,

the vertex function

&, (e) =D,"(t„,'- t, , ')D, '(t, , '- t, , ')

and the susceptibility

Xl~ ~ (k, e) = —Qp Tl~ ~ '(k', e)T~ I, '(%'+4;e)

with T~~ '(k, e) being the Fourier transform of Tl. l.
'"" (e) in the homogeneous KKR-CPA. Again

evaluation of Eq. (5) is a tractable way of investigating the influence of the band structure on the dis-
tribution of the diffuse scattering intensity I(%) in a first-principles calculation. Here we are con-
cerned with the possible role of the Fermi surface.

For yI. =0 and M» constant, the second term in Eq. (5) may be rewritten as

gg f de f de' (f (e) -f (e')](e —e') 'Immy~ (k', e) ImT~ z(k'+k;e).

Since Imw~ ~, (k, e) is closely related to the spec-
tral function AR(k, e) which has sharp peaks in
regions of k and ~ where there are well defined
bands, this term will peak at k vectors which
connect well defined flat sheets of Fermi surfac-
es. It is now our suggestion that the full S~'(k)
in Eq. (5) will also have this structure.

To check the above hypothesis we have evalu-
ated Eq. (5) for a number of the one-dimensional
alloys studied by Gonis and Stocks. 'P' " The re-
sults are shown in Fig. 1. For alloys with C=0.9
and 0.7 the peak is at 2k'F" and it is seen to vary
with concentration. This is an ordering analog of
the Peierls transition. In the alloy with C =0.5
the peak is at the special point of one dimension,
0, =~/a.

We have not yet studied S" (%) for three dimen-
sional systems but our KKR-CPA calculations
indicate that many alloys of noble and transition
metals such a,s AgcPd-, c (Ref. 5) and CucPd, c
do have flat portions to their Fermi surfaces per-
pendicular to the 110 directions; moreover, these
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FIG. 1. Calculated values of S('") 1'k) for three con-

centrations of a one-dimensional random alloy I,'Refs. 10
and 11). The chemical potential is determined with
the assumption that both the A and B species contr i-
bute 0.29 states atom '.
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quantity m is the separation along the (110) direc-
tion between the diffuse scattering spots defined
by Ohshima and Watanabe. ' The experimental
results for m obtained from electron diffraction
measurements are also shown in Fig. 2 and are
in excellent agreement with our calculated values.
We note that the occurrence of this flat I'-cen-
tered piece of Fermi surface in this and similar
alloys is a robust phenomenon since this sheet of
Fermi surface must change from a convex shape
in the noble metal to a concave one in the late
transition metal in a continuous fashion. Hence,
it is almost forced to be flat for some concen-
tration. Thus, we suggest that when S "(k) is
evaluated for these systems it will show structure
due to this sheet and so provide an explanation for
the concentration-dependent features in the diffuse
scattering intensities. '

This work was sponsored by the Division of
Materials Sciences, U. S. Department of Energy,
under Contract No. W-7405-eng-26 with Union
Carbon and Carbide, Nuclear Division.

FIQ. 2. Upper frame: Calculated (open circles) and
experimental (dots) values of the diffuse scattering
spot separation for Cu~Pd, ~ I in units of the distance
between the (0, 0, 0) and (0, 0, 2) Bragg maxima]. Lower
frame: Calculated Fermi surfaces in the lXK plane
for three Cu&Pd, ~ alloys showing the increasing flat-
tening of the Fermi surface with increasing Pd content.
The bars indicate the degree of disorder broadening.

Fermi surfaces are rather sharp. In Fig. 2 we
show Fermi surfaces and values of m =2[(v'2
—2k„(110)]obtained on the basis of self-consis-
tent-field —KKR-CPA" calculations for the ex-
perimentally relevant Cu&Pd, ~ system. The

'M A Krivoglaz Theory of X-Ray and Thexrnal-
Neut~on Scattering by Real Qyystals (Plenum, New
York, 1969).

D. de Fontaine, in Solid State Physics, edited by
H. Ehrenreich, F. Seitz, and D. Turnbull (Academic,
New York, 1979), Vol. 34.

3K. Ohshima and D. Watanabe, Acta Crystallogr.
Sec. A 29, 520 (1973).

S. C. Moss, Phys. Rev. Lett. 22, 1108 (1969).
5A. J. Pindor, W. M. Temmerman, B. L. Qyorffy,

and Q. M. Stocks, J. Phys. F 10, 2617 (1980).
6R. Evans, Adv. Phys. 28, 143 (1979).
VG. Stell, Phys. Rev. 184, 135 (1969).
8W. E. Pickett and B. L. Gyorffy, in Superconduc

tivity in d- and f Band Metals, edit-ed by D. H. Doug-
lass (Plenum, New York, 1976).

F. Ducastelle and F. Qautier, J. Phys. F 6, 2039
(1976).

'PA. Gonis and G. M. Stocks, Phys. Rev. B 25, 659
(1982).
"The parameters specifying the A (B) potentials used

in this calculation were Xp=0.4 (0 4) X) =0 5 (0 5),
Vp

=' —2 (—6), and V(= 12 (12) in the notation of Ref. 10.
' G. M. Stocks and H. Winter, Z. Phys. B 46, 95

(1982).

377


