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A recent treatment of superfluid turbulence is extended to the study of turbulence in a
channel. It is found that as the flow velocity is reduced, a critical velocity is reached
such that the rate at which new vortex singularities are created by line-line reconnec-
tions becomes insufficient to balance the loss of vortices at the channel walls, and the
vortex tangle ceases to be topologically self-sustaining. Comparison with experiment
indicates that this approach provides a reasonable explanation of observed critical
velocities.
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One of the more interesting properties of super-
fluid 'He is that it can flow without dissipation.
It is well known, however, that this is true only
up to some maximum flow velocity, above which
the fluid undergoes a transition to a kind of turbu-
lent state in which it becomes filled with a tangle
of quantized vortex lines. Numerous elegant ex-
periments have established the basic properties
of this instability, ' ' yet its origin has remained
an enduring mystery. ' In this paper, a recently
developed method for treating superfluid turbu-
lence" is used to investigate the vortex tangle in
a channel, with the particular aim of finding out
what happens to the tangle as the average flow
velocity is reduced. This approach yields a sim-
ple qualitative explanation of the transition, and
allows one to calculate its properties.

If the curve s = s(k, t) specifies the instantaneous
configuration of vortex-line singularities which
make up the tangle, the instantaneous motion of
the line with respect to the local average super-
fluid velocity is to a good approximation given by"

& So/Bt = So && So" + &S()' && (Vo —S() && S() ),

where s, ' is the vector tangent and s," the vector
curvatur e at the point in question, vp v o v 0 ls
the local relative velocity between the normal
fluid and the superfluid, and & is the coefficient
which measures the force exerted by the normal
fluid on the vortex line." The zero subscripts
signify that Eq. (1) is given in reduced units, such
that length is expressed in terms of the charac-
teristic dimension D, velocities in terms of the
corresponding Feynman velocity P/D, "and time
ill tel'nls of D /t3 ~ Eguatlon (1) breaks down on
the relatively infrequent occasions when vortex
lines try to cross. It is assumed" that whenever
this occurs, the vortex singularities will undergo
a topology-changing reconnection. As was pointed
out previously, "this new idea is of central im-
portance in developing an understanding of super-
fluid turbulence, since it is through this process
that new vortex singularities are generated.

Equation (1) plus the reconnection Ansatz give
a complete, although slightly idealized, prescrip-
tion for calculating the time development of the
vortex tangle. The combination of Eil. (1) acting
on randomly curving singularities and the occa-
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sional, discrete reconnection events leads to a
highly nonlinear problem, which, however, turns
out to be well suited for numerical simulations.
Thus it was shown in Ref. 10 that the properties
of homogeneous steady-state turbulence can be
calculated directly by implementing this prescrip-
tion on the computer.

The model is easily augmented to include the
effect of real boundaries by noting that vortex
lines which approach such a boundary sufficiently
closely will undergo a line-surface reconnection"
of the kind shomn in Fig. 1. With this simple addi-
tion, the powerful yet completely transparent ap-
proach outlined above can be applied to study
superfluid turbulence in a channel. In the actual
calculations, a sample volume consisting of a
suitably long section of the channel is filled with
an arbitrary initial vortex configuration and sub-
jected to a uniform driving velocity vp along the
channel flow direction. The development of this
configuration as it interacts with the channel
walls as well as itself is then followed by explicit
calculation. " It is found that the vortex tangle in
the channel reaches a well-defined steady state
about which it fluctuates in a random manner. At
lower values of v„ the average steady-state line-
length density L, falls increasingly below the cor-
responding homogeneous-turbulence value, and
at a mell-defined critical velocity v p, it drops
discontinuously to zero. Thus, the existence of
a critical velocity below@ sehich the vortex tangle
ceases to be topologically self sustaining f-ollows

directly from Eq. (1) plus the reconnection Ansatz,
which in turn are derivable from simple vortex
dynamics. From the calculations it is clear that
the tangle ceases to be self-sustaining when the
line-length density drops to a level such that the
rate at which new growth loops are created by
the reconnection process cannot keep up with the
annihilation of vortex lines at the channel walls.

In contrast to the calculations on homogeneous
turbulence, "where dimensional scaling argu-
ments obviate much of the computational labor,
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FIG. 1. Solid line, schematic representation of a
line-surface reconnection as it would occur naturally.
Dashed line, reconnection made artificially far out to
inhibit surface-enhanced loop production.
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FIG. 2. Computed values of the steady-state line-
length density in a square channel for various values
of the driving velocity. I'he dashed line gives the homo-
geneous-turbulence results.

the calculation of Lo(uo) is quite arduous. Never-
theless, sufficient calculations have been per-
formed to permit comparison with various experi-
mentally established features of the critical
velocity problem. One may note at the outset
that if L,(u, ) has been calculated for a particular
channel geometry, the scaled-out solution for a
channel of characteristic dimension D is

I.(u) = L,(uD/P )/D'.

It follows that the critical velocity must scale as

u, =v„(—tc/4mD) 1n(c,/s "a,),
where P has been inserted explicitly. The rela
tion (3), versions of which (with v„omitted) oc-
cur often in discussions of the critical velocity
problem, is seen to be an essentially trivial re-
sult. The real problem lies in determining v„.

Figure 2 shows the steady-state vortex-line
density Lp as a function of '&p calculated for &

=0.1 (T =1.6 K) in a square channel with smooth
walls, with a driving velocity which is uniform
over the entire channel. Note that I-p is the aver-
age of a fluctuating quantity, and furthermore is
an average over the channel cross section. Al-
though such curves also provide other informa-
tion which may be compared with experiment, the
initial interest is in the finite critical velocity
that they exhibit.

The calculations leading to Fig. 2 were repeated
with n =0.03 (T =—1.25 K) and n = 0.3 (T =—2.0 K).
The final results for the critical velocity are giv-
en by the open circles in Fig. 3. For comparison,
the points show the experimental values of criti-
cal velocity obtained by Childers and Tough' in a
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FIG. B. Open circles, computed values of the critical
velocity in a square, smooth channel. Points are the
measured values of Ref. 5, in reduced units. The line
is drawn to guide the eye. The open square shows the
effect of going from a square channel to a parallel-
plate geometry. The open triangle shows the effect of
inhibiting the surface enhancement.

circular channel, with the normal and superfluid
components in counter flow. At the present rudi-
mentary stage of the theory, the high degree of
numerical agreement seen here should not be
taken too seriously. Other experiments give
critical velocities differing by factors of as much
as 2 or 3. Also, as discussed below, the calcula-
tions themselves turn out to be sensitive to fac-
tors such as pinning and nonuniform driving fields,
the accurate treatment of which requires further
refinements of the theory. Nevertheless, it is
clear that both the approximate magnitude and
the temperature dependence of the critical veloci-
ty are successfully accounted for.

Ladner and Tough' have established that the
critical velocity is affected not only by the char-
acteristic dimension of the channel, but also by
its geometry. They find that a channel with a
10:1 rectangular cross section exhibits a o„
which is about a factor of 2.5 less than that
found for a 1:1 (square) cross section. To test
the theory in this regard, the critical velocity for
flow between parallel plates at ~ =0.1 (T = 1.6 K)
was calculated. " Presumably, the parallel-plate
geometry should approximate the 10:1 rectangu-
lar channel. The calculated v„, indicated in Fig.
3 by a hollow square, is found to drop by a factor

of -2.5, in perfect agreement with experiment.
Thus the observed geometry dependence of U„
also seems to be accounted for by the theory.

Examination of the calculational output uncov-
ered the surprising fact that near v„ the turbu-
lence is not in fact maintained by new loops
created in the interior of the channel, but pri-
marily by loops created at the walls. This su~-
face enhancement of the loop-creating process
arises when a surface reconnection occurs (Fig.
1). The resulting large self-induced velocities
cause the end of the vortex to move rapidly
around on the surface, leading to an enhanced
probability of line-line reconnections near there.
When this surface enhancement is artificially in-
hibited, e.g. , by making the surface reconnec-
tions as shown by the dashed line in Fig. 1, the
critical velocity increases by a factor of 2 to 4.
This higher critical velocity may be interpreted
roughly as the velocity at which the turbulence
becomes self-sustaining as a result of bulk"
loop creation in the channel interior.

The higher critical velocity should be observa-
ble only in experimental situations where the sur-
face enhancement is inhibited. One expects, for
example, that loop production near a wall would
tend to be decreased when the wall offers many
pinning sites, as is the case for metal walls. A
second inhibiting mechanism should operate in
situations such as counterflow, where the turbu-
lence is driven mainly by the normal-fluid veloci-
ty. Since the normal-fluid velocity has to go to
zero at the walls, loop growth there will be de-
creased.

In light of these expectations, it is very inter-
esting to note that in some experiments, ' a well-
defined kink or discontinuity in the L,(v,) curve is
observed at a secondary" critical velocity typi-
cally a few times larger than the primary" v„.
It would seem natural to identify this secondary
velocity with the onset of a turbulent state main-
tained by the creation of loops in the interior of
the channel. The experimentally observed trends
lend weight to this conjecture: The secondary
feature appears as a very pronounced discontinu-
ity for counterflow in metal tubes, it appears as
a weak kink for counterflow in smooth glass tubes,
and it is absent for pure superf low in glass tubes.
It must be noted, however, that the artificial
method of inhibiting the surface enhancement used
so far in the calculations merely produces a
curve like the one in Fig. 2 moved to higher ve-
locities, not one which shows two critical veloci-
ties. Clearly a more realistic treatment of pin-
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ning effects and of the nonuniform normal-fluid
field will be required to sort out in detail the vari-
ous kinds of transition behavior which have been
observed.

In summary, a description of superfluid turbu-
lence which emphasizes the importance of line-
line and line-surface reconnections leads to a
very natural solution of the critical-velocity
problem. The values of the calculated critical
velocity as a function of channel size, tempera-
ture, and aspect ratio are aU. in substantial agree-
ment with experiment. The threshold behavior is
found to be sensitive to various surface effects,
in a manner strongly reminiscent of laboratory
observations. Further refinements of the calcula-
tion are desirable, in particular with respect to
pinning, nonuniform driving fields, and end ef-
fects. Perhaps more importantly, the question
of how the turbulent state is initiated, presumably
from some original distribution of pinned vortices,
as suggested by Vinen, ' is not yet understood.
This question, which is logically and experimen-
tally distinct from the critical-velocity problem,
should be amenable to the same kind of treatment.
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Reentrant boundary conditions are applied to the ends
of the sample section. This is equivalent to filling the
channel with an infinite repetition of the sample section,

Gne can go from the square channel to the parallel-
plate problem by replacing one pair of channel walls
by surfaces obeying reentrant boundary conditions.
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