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Dispersion of the Nonlinear Second-Order Optical Susceptibility
of an Organic System: p-Nitroaniline
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Measurements of the frequency dependence of the microscopic second-order nonlinear
electronic susceptibility are reported for the organic system p-nitroaniline. The results
are suitably described in terms of a theoretical microscopic mechanism involving highly
charge-correlated electron states dominating the second-order nonlinear optical re-
sponse of the system as presented in earlier theoretical calculations.

PACS numbers: 42.65.Cq, 78.20.Dj

Recently, theoretical and experimental interest
has centered on the nature of highly charge-cor-
related &-electron states in organic and polymer-
ic crystalline structures that comprise the micro-
scopic origin of exceptional second-order nonlin-
ear optical responses g;;, ' (- ~, ;~„&,), particu-
larly as exhibited in second-harmonic generation
(SHG) and linear electro-optic effect (LEO) proper-
ties. In one example, 2-methyl 4-nitroaniline
crystals possess SHG and LEO figures of merit
50 times those of potassium dihydrogen phosphate
that are primarily purely electronic at dc and op-
tical frequencies. ' ' Currently these electronic
excitations are viewed as occurring on sites
coupled weakly to their neighbors and providing
microscopic sources of nonlinear optical response

~

through the on-site microscopic second-order
nonlinear electronic susceptibility P {,.„~ In the
rigid-lattice-gas approximation, X'"(- &„&„~,)
=Nf 'f 2f 'I3;,„(-~„~„~,), where N is the num-
ber of sites per unit volume and f ' represents
local-field corrections.

I alama and Garito' have presented a detailed
theoretical analysis of P;;, and the charge-cor-
related electron states in the fundamentally im-
portant case of P-nitroaniline (P NA) (Fig. 1). In
second-order perturbation theory with the per-
turbing Hamiltonian H' =eE ~ r sint, and both
the fundamental and created combined frequencies
below electronic resonances but well above vibra-
tional and rotational modes, t3;,„acn be expressed
as

e P)~ 1 1
42' ' '" "" '" '" "" '" (~ —~)(~ +~) (~ +~)(~ —w))

(~„,—~)(~„,—2~) {~„,+~){~„,+2~))

+ 4+tv „'r,„'av„'(u)„,' —4~2) +r „'(v „'b,r„'.+ v, „'{2.v„')((u„,2+2(u2)]

where summations are over complete sets of ei-
genstates &nl and &n'I of the unperturbed system,
r„„'= n&~r'~ 'n), &r„'=r„„' r„', and k~-„, is the
difference between excited and ground-state ener-
gies.

A configuration-interaction calculation with
the PNA singlet excited states (4.2, 4.37, 4.38,
5.57, 6.17, 6.63, 6.80, 7.06, and 7.49 eV) showed
that the dominant contribution to the measured
P, ,~ value is contained in the last summation term,

0

FIG. 1. Molecular structure of PNA.

350 1983 The American Physical Society



VOLUME 50, NUMBER 5 PHYSICAL REVIEW LETTERS 31 JANUARY 1983

TABLE I. Comparison of experimental and theoretical p„values of
PNA. p„~p is the experimental value; p„", the calculated value account-
ing for solvent effect; and p„&, the gas-phase calculated value from Ref. 4.

A Qm) k+ (eV) p„~ (10 ~0 esu) p„" (10 30 esu) p„~ (10 30 esu)

1.907
1.370
1.060
0.909
0.830

0.650
0.905
1.170
1.364
1.494

9.6+0.5
11.8 +0.3
16.9 + 0.4

25+ 1.0
40 + 3.0

9.5
11.6
15.9
24
35

5.7
6.4
7.7
9.2

10.7

especially the virtual excitations to the highly
correlated second excited state (&~„,=4.37 eV).'
This latter result provided a firm basis for con-
venient quasi one-dimensional two level phenome-
nological models for organic structures. "

In this paper we report the first measurements
of the frequency dependence (dispersion) of P„,
the vector part of P;;„, for an organic system by
having perf ormed dc-induced second-harmonic
generation measurements on liquid dioxane solu-
tions of PNA. The results provide a direct test
of current theoretical descriptions and under-
standing of second-order nonlinear optical proc-
esses occurring in these novel structures. In the
experiment, a tunable pulsed dye laser (Quanta
Ray) was used as a pump beam into a compressed
H, gas cell, generating Stokes lines from stimu-
lated Raman scattering tunable from 0.2 to 2 pm.
The dc-induced second-harmonic generation ex-
periment was performed by the wedge cell tech-
nique with synchronous de voltage pulses as de-
scribed earlier. ' The measurements utilized
several different fundamental wavelengths of inci-
dent power well below solution damage thresholds
and were referenced to d» of quartz (1.2 & 10 '
esu). '

In the infinite-dilution limit, solute-solute and
solvent-solvent interactions were minimized with
Onsager local-field corrections. ' In the C» sym-
metry for PNA and second-harmonic generation,
P„ is given by

p„=p„„„+3 Ip.„+p...+2p,„„+2p..„],
where thex direction is along the molecular di-
pole axis (Fig. 1).

The frequeney-dependent experimental values
(p„'" ) of p„ for PNA are listed in Table I and
plotted in Fig. 2. As the fundamental frequency
is increased, P„"~ rapidly increases smoothly
as 2~ approaches the excitation frequency (&u„,- 3.5 eV/&) which is the first major optical-ab-
sorption peak of PNA in dioxane corresponding
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FIG. 2. Frequency dependence of p„ for PNA: (plus-

ses) experimental p ~ data points, and (solid line)
theoretical p„"curve accounting for solvent effect.
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to excitations to the important second excited
state.

The difference between the experimental P„'"~
values and calculated gas-phase P„' results of
PNA (Table I) is due to well-known solvent-in-
duced shifts of the singlet-singlet excitation ener-
gies easily observable in solution absorption
spectra. ' The PNA permanent dipole moment (p)
polarizes the surrounding nonpolar dioxane sol-
vent medium, causing an induced dipole moment
proportional to W with an interaction energy E
=A p', where A =-a 'f(n), ~ is the cavity radius
containing the PNA, and f(n) is a standard func-
tion of the refractive index of the solvent medium. '
The shift in the excitation energy (+co„,) is caused
by changes in the difference between the PNA
ground- and excited-state dipole moments which
in turn is an important quantity determining the
magnitude of P„:

&~., =(A/I )(~.'-),'),
where p; =-e&;;". The measured shifts in the
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singlet-singlet excitation spectrum of PNA in
dioxane provide a new set of state energies (4.41,
3.51, 4.2, 4.86, 5.58, 6.53, 7.01, 6.63, and 7.63
eV). These energies were used in Eq. (1), yield-
ing the P„' values listed in Table I and the calcu-
lated dispersion curve (solid line) shown in Fig.
2. Within experimental error, the agreement be-
tween experiment and theory is quite satisfactory.
Further refinement such as accounting for minor
solvent-induced changes in the matrix elements
of Eq. (1) would result in an even closer agree-
ment by 10%-15% increase in the calculated P„
values.

In summary, measurements of the dispersion
of l3„ for PNA have demonstrated that the theoreti-
cal microscopic mechanism is essentially cor-
rect in describing the second-order nonlinear
optical response in terms of highly charge-cor-
related electron states. Importantly, the eff ect
of solvent enhancement on P„ is adequately under-
stood in terms of a solute-solvent reaction field
mediated by dipole-dipole interactions. Recently
completed studies of 0...on related systems and
detailed experimental descriptions will be re-
ported separately.
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