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A new measure of strange attractors is introduced which offers a practical algorithm to
determine their character from the time series of a single observable. The relation of this
new measure to fractal dimension and information-theoretic entropy is discussed.
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Dissipative dynamical systems which exhibit
chaotic behavior often have an attractor in phase
space which is strange. ' ' Strange attractors
are typical. ly characterized by fracta1. dimension-
ality D which is smaller than the number of de-
grees of freedom E, D &I". So far, this fractal
(or Hausdorff) dimension has been the most com-
monly used measure of the "strangeness" of at-
tractors. ' " Several attempts to compute this
number directly from box-counting algorithms,
which stem from the definition of this dimension-
ality, have been presented. ' " It turns out that
it is very difficult" to compute D whenever D &2.
Most importantly, the use of a single time series
of any observable to extract this measure of the
attractor has been found to be impractical for
dynamical systems which possess attractors
whose D& 2." An important question is then how
to analyze experimental signals. In this Letter
we suggest a different measure for the strange-
ness of attractors, a measure which can be easil. y
obtained from any time series without resorting
to Poincare maps, ' and which is closely related
to the fractal dimension. We shall attempt to
argue that in fact this measure is more relevant
in many cases than D itself.

The measure is obtained by considering cor-
relations between points of a long-time series
on the attractor. Denote the N points of such a
long-time series by IX,], ,"-=fX (t + i~)]-.= . .
where 7 is an arbitrary but fixed time increment.

The definition of the correl. ation integral is
N

C(r)-=lim —,g 0(r —~X, —X,. ()
N o+ i i=1

=-5 d'r'c(r'), (1)

where 8(x) is the Heaviside function and c(r) is
the standard correlation function. The main
point of this paper is that C(r) behaves as a pow-
er of ~ for small ~:

C(r) ~ r'.
Moreover, the exponent v is closely related to D
as well as to a properly defined entropy which is
discussed below. Before continuing the analysis
we show in Fig. 1 two examples of the behavior
(2).

Shown are the logarithms of the correlation in-
tegrals for the Henon map" [Fig. 1(a)] and the
Lorenz model' [Fig. 1(b)] as a function of logr.
Equally convincing power laws were obtained for
the Kaplan- Yorke map, ' the Rabinovich-Fabri-
kant" equationsp and the logistic map" at the on-
set of chaos (see Table I). For the Zaslavskii
map" no clear power law is obtained even for
longer runs.

One sees from Table I that v is in al. l cases
very close to D (the errors quoted are "educated
guesses"), but is never greater than D (with the
exception of Zaslavskii's map where no good
power law is seen). Below, we shall argue that
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FIG. 1. Correlation integrals for (a) Henon map and (b) Lorenz model on doubly logarithmic scales. In (b) the

upper line was computed from a single variable time series. In both panels the scale of x is arbitrary.

the value v =1.21 obtained for the Henon map is
wrong as a result of systematic errors. An im-
proved method yields indeed v= 1.25+ 0.02, such
that v =D within the errors. %e now discuss the
relation between various measures of the strange-
ness of attractors.

Consider a coverage of the attractor by hyper-
cubes of edge length l. If the attractor is a frac-
tai, then the number M(l) of cubes that contain a

piece of the attractor is'
M(l)-l ~ (3

Denote now by p. ; (i =1, 2. . . ) the number of
points from the set fX,j, ,"which are in the ith
nonempty cube. Up to a factor of O(l) (i.e. , the
number of nearest-neighbor cubes) we can write

TABLE I. Maps used in evidence, with values of corresponding parameters.

No. of iterations„
time increment T

Henon map,
a =1.4, Q =. 0.3

Kaplan-corke map,
u =0.2

Logistic equation,
5 =3.569 945 6. . .

Lorenz equation'
Babinovich-

Fabrikant equation"
Zaslavskii map~

1.21 + 0.01
1.25+ 0.02

1.42 + 0.02
0.500 + 0.005

0.4926& v& 0.5024
2.05 + 0.01

2.18+ 0.01
(-1.5)

15 000
20 000

15 000

25 000
15000; 7-=0.25

15000; T=0.25
25 000

0.588"
2,06 + 0.01&

1.39g

0.517 097 6'

~Parameters as in Refs. 10 and 6.
Parameters as in Sec. 3 of Bef. 12.

'Parameters as in Ref. 7.
dFrom Eqs. (1) and (2).
~From single-variable time series,

with f =3.

~Exact analytic bounds (Ref. 14).
5'Bef. 7.
"Ref. 9.
' Bef. 14.
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where angular brackets denote an average over
all. occupied eel.ls.

By the Schwartz inequality,

inequality" "(W') ~ exp[(W lnW)] to prove the in-
equality v & 0. %'e thus find that, combining v and
D together, we can have an excellent estimate of
the information content of a strange attractor via
the set of inequal. ities

v ~+0' ~+D~ (10)

where Q p, =N and Eq. (3) have been used. From
this it fol. lows that

v ~+D,

To gain further understanding of the rel. ation
between these two measures of strangeness we
introduce a third one, information-theoretic
entropy. " This is the minimal information need-
ed to pin down a point on the attractor with pre-
cision l:

S(l) = —Q P,. lnP, ,
i=1

where P, is the probability for a point to fall in
the ith cube (for N-~, p, = p, ;/N). For auni-
form coverage [i.e. , p, =1/M(l)] the entropy is
S'(l) = lnM (l) = const —D lnl. In the general case
S(l) &S'(l). If we adopt the Ansatz

S(l) =S, —o Inl (8)

(with v cal.led "information dimension" by Farm-
er, and "dimension" by Renyi"), we are led to
the inequality

0 &D.

If we assume now that ~,. is independent of j, we
can write C(l)/C(2l) = (u&')/(&u). On the other hand
we consider

S(2l ) —S(l) =Q P, Q &u, in'»; = (~ in&a)/(&u).

Defining the quantity W = ~/(&u) we can employ the

Finally'we want to prove that v ~(T, thus esti-
mating 0 from above and below. A sketch of the
proof is as follows. Consider two nested cover-
ings with cubes of l.engths l and 2l, respectively.
Evidently, M(l) = 2'(2l). Define p, as the prob-
ability for a point to fall in cube i of the fine cov-
ering and P, the probability for it to fall. in the
jth cube of the coarser covering, P, =Q,
Define now cu,. byp, . =~,P, . Evidentlyg, .~, u&,.

According to Eq. (4) the correl. ation integral
C(l), up to a, factor of 0 (1), is

,V( l) M(2l)

It is important to stress that when the covering
of the attractor is uniform, the equal. ities in Eq.
(10) are realized. ""The fact that v4 D in the
logistic map shows that in this case the coverage
is not uniform. Certain neighborhoods have high-
er "seniority" in the sense that they are visited
more often than others. The fractal. dimension is
ignorant of the seniority. It has to do only with
the geometrical structure of the attractor. Re-
gions of the attractor which are rarely visited
contribute to D with equal. weight as regions of
high visiting rate. The correlation integral (and
the entropy) are, however, sensitive to this ef-
fect. In this sense v may be a more relevant
measure of the attractor than D because it is
sensitive to the dynamical process of coverage
of the attractor. The difference between v and D
gives a measure of the importance of different
seniority of different neighborhoods.

Although the data of Tabl I were obtained using
-20000 points, convergence in all cases expect
Zasl. avskii's map was a, l.ready apparent with a few
thousand points. (This should be compared with
200000 points needed to obtain convergence of
the box-counting algorithm used to compute D in
the case of the Henon map, and the l.ack of con-
vergence with the same number of points in the
ease of the Lorenz model. )

A variant of our method, inspired by Refs. 20
and 21, consists of measuring instead of X,. only
one component, say X, . A new f -dimensional.
phase space is then constructed by using vectors

(xi & i+& &iX+»2' ~

+i+fr�)

which are then inserted in Eq. (1) instead of the
X, An example of the results obtained from this
procedure with f = 3 is shown in Fig. 1(b) for the
Lorenz model. . The + marks were obtained by fol-
lowing the x variable only. The power l.aw is still
satisfactory. The value of v calcul. ated from the
one-variable data is 2.06+ 0.02. From an experi-
mental point of vi. ew this procedure is much pre-
ferabl. e. In fact, it allows a consistent determina-
tion of v in a high-dimensional dynamical system,
as will be shown in a forthcoming publ, ication. "
Al. so, it allows elimination of systematic errors
due to corrections to scaling, by choosing the
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"embedding dimension" f larger than strictly
necessary. Choosing f = 3f-or the Henon map we

get, e.g. , the value v=1.25+0.02 quoted above.
More details will be presented in Ref. 14.

To summarize, we have introduced the exponent
v of the power-law dependence of the correlation
integral as a new measure for the strangeness of
attractors. " The value of this exponent can be
obtained from a time series of one or more vari-
ables. The computation is relatively easy and
converges rapidly. The relation of the exponent
v to the fractal dimension and information en-
tropy have been discussed. If the attractor is
visited by the trajectory uniformly, all. these
measures coalesce. Otherwise, we attempted to
argue that v might be more dynamically relevant
than D. It is our hope that this new characteristic
exponent would be actually measured in experi-
mental systems whose dynamics is governed by
strange attractors.
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