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reaction model) DWBA theory (which is first
order) must sometimes fail and should be re-
placed by the more complete CCBA. (v) The data
also show that d,,/, and dg/, strength functions do
not vary with A and J in the smooth way expected
from giant single-particle resonance theory, ap-
parently showing effects of substructures (door-
ways).
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Empirical conjectures of Feneuille, based on new regularities observed in the quasi-
Landau spectrum, are investigated. Scaling laws for Rydberg atoms in magnetic fields
are obtained from Schrddinger’s equation, in two different approximations. Our formu-
las support the empirical conjectures and show them to be closely connected with the dy-
namics of the electronic motion in the z =0 plane.

PACS numbers: 32.60.+i, 03.65.Sq, 03.65.Ge

The discovery by Garton and Tomkins' of equal -
ly spaced resonances near the ionization limit in
the absorption spectrum of barium in a magnetic
field of 47 kG has greatly stimulated investiga-
tion of the properties of hydrogenic Rydberg
states in a regime where Coulomb and magnetic
field strengths are of comparable magnitude.

The observation of regularities in this spectrum
is of special relevance since the problem of such
a simple atom as hydrogen in a uniform magnetic

field still remains unsolved. The basic difficulty
is that the Hamiltonian for such a system is non-
separable and there is no natural expansion pa-
rameter capable of adiabatically changing the
spherical symmetry at vanishing magnetic field
into the cylindrical symmetry of the high-field
limit. A review of the problem of atoms in mag-
netic fields is given by Garstang® and Gay.® Re-
cently, the problem of hydrogenic atoms in mag-
netic fields has attracted much attention as a re-
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sult of several experimental? and theoretical®®
investigations which seem to indicate that an
“approximate symmetry” may exist.

In an interesting contribution Feneuille” re-
ported further regularities in the so-called quasi-
Landau spectrum?® and conjectured that a scaling
relation might exist, connecting the Coulomb and
Landau regimes. Combining results obtained by
one of us,® valid for energies near the ionization
limit, with results from perturbation theory,?:?
valid at low energies, he conjectured that the
quantity »®E might depend, in the whole energy
range, only on 3=n’w [n being the principal quan-
tum number, w=eB/(Mc) the cyclotron frequency,
and B the magnetic field strength|. Fitting an
equation to the experimental data of Castro et al.®
and Gay, Delande, and Biraben,'® he then sug-
gested!?

n’E=(B+38+3)7 = (23+4)"2, (1)

The purpose of the present communication is to
report quantum scaling laws obtained by exploring
the dynan:ics of the electronic motion along a
plane perpendicular to the magnetic field. Using
a recently proposed'® procedure, we solve Schro-
dinger’s equation in the z =0 plane®?® and obtain
a scaling law for hydrogenic atoms in uniform
magnetic fields. This scaling law shows how the
quantity »®E depends on m, n, and 3, where m
is the magnetic quantum number of the electron.
From our equations it can easily be seen that for
Rydberg states (z > 1) Feneuille’s empirical con-
jecture is a direct consequence of the motion in
2z =0 plane. In addition, we show that a similar
scaling law is predicted by the familiar two-
dimensional WKB model.>?

The particular role of the dynamics in the 2 =0
plane was first recognized by Edmonds.*®*”'®* By
quantization of the electronic motion in this plane
he was able to account for the striking regular
spacing between the resonances measured by Gar-
ton and Tomkins'™® across the ionization limit.
Meanwhile the special characteristics resulting
from the motion in the z =0 plane have been cor -
roborated by many people. Here we just quote
the latest reports,® '® from which earlier refer-
ences may easily be obtained. However, we
should mention the basic physical reason why mo-
tion in the z =0 plane is considered: It is because
the so-called quasi-Landau resonances observed
by Garton and Tomkins' and many other experi-
mental investigators®:* refer to the o-polarization
spectra (as distinct from the 7 spectra). For
this reason, essentially all theoretical investiga-

tions start with the premise that the eigenfunction
is localized in a plane perpendicular to the mag-
netic field, and remarkably good agreement with
experiment is obtained from the Coulomb (B -~ 0)
to the Landau (B — «) regime,? %®

In a recent work'® a variational technique was
used to show that eigenvalues of the Schrddinger
equation of a particle moving in a potential V(»)
may easily be obtained from the equation (we use
atomic units)

E =30+ Vian/a), (2)

where a is a constant determined as in Ref, 12
and where @ >0 is a variational parameter whose
value is determined as the solution of the equa-
tion 3E/8a =0, i.e,, from

a+(8/8a)V(ian/a)=0. (3)

In the equation above we replaced the Laurent
expansion an+b+c/n+..., discussed in Ref. 12,
by an, which is the correct limit for Rydberg
states (r>1).

As is well known,?? the potential for the motion
in the z =0 plane, in cylindrical coordinates, is
given by'® 6

V(p) = =p™ + 3To™% +50°0%, (4)

where T=m? - 1.
to obtain

From Egs. (2)-(4) it is trivial

@*n’E =(5+T/2a*n®x?—x +(a®/8x%) 3, (5a)
where x =ana is the positive root of
(1+7T/a?n?)x* ~x° = 1a%3%=0. (5b)

To obtain the eigenvalues, one first solves Eq.
(5b) for the positive root,'” say x,; substitution of
this x, in Eq. (5a) then gives n®E. Equation (5)
clearly shows how »°E depends on m? »?% and 8.
As discussed in Ref. 12, a=1 corresponds to the
pure Coulombian case (3, B=0) while a=2 corre-
sponds to the pure Landau case (3, B~ =, the po-
tential being a harmonic oscillator). For inter-
mediate values of 3, a is a smooth function of 3
bounded to the interval 1 <a(p) <2. Since the posi-
tive root x, is obtained from Eq. (5b), Eq. (5a)
may be rewritten as

n’E =a"?[ $x% —x +(a®/8x%) 3°]
=(a%2) [zx* = x* + (3a®)B%]. (6a)
For n>m, a condition always fulfilled by Ryd-

berg states, Eq. (5b) can be very well approxi-

mated by
x*=x3 = (5a%)3=0. (6b)

325



VOLUME 50, NUMBER 5

PHYSICAL REVIEW LETTERS

31 JANUARY 1983

From Eq. (6) it is seen that Feneuille’s empirical
expectation that n®£ is only a function of 8 is in-
deed well justified. It is interesting to observe
that Eq. (6) allows one to regard the scaling as
n®E being given by a function of 3 |since a=a(p))|
or else as a*#®E being given by a function of 6
=g®B., Furthermore, because of Eq. (6b), the
three-term sum in Eq. (6a) may be rewritten as

a@*n’E = —5x +a® 3/ 4x*? (7a)
== W? 4§ af/x? (o)
=x2 — 3x. (7¢)

The possibility of writing the energy as the sum
of different contributions is a characteristic of
separable systems. Although in the present prob-
lem we succeeded in writing the energy as a
sum, the individual terms are not totally discon-
nected since they all depend on x. It is easy to
verify that for a=1 (¢ =2) the scaling predicted
by Eq. (6) is precisely the one obeyed by the
eigenvalues of the Coulomb (harmonic oscillator)
potential, as it should be. The situation for
Rydberg states is privileged since only the first
coefficient is needed in the Laurent expansion
an+b+c/n+... . In general, the numerical val-
ues of the truncated Laurent expansion may de-
pend slightly on whether one uses eigenfunctions
with low or high » to obtain a, b,c,... . Using
the same procedure described in Ref. 12, we
obtained numerically the dependence a=a(5). In
the region of strongest variation, i.e., near and
below the ionization limit, this dependence can,
in good approximation, be taken as given by the

function a=2 —e~%2% In the limit cases, for low
B one has
WE = -1+,

and for high 8
n’E =3,

We now investigate the scaling as predicted by
the familiar two-dimensional WKB model,?:3 13-16
As is known, the potential in Eq. (4) gives the
correct spacing of the quasi-Landau resonances
around E =0 but is not simultaneously capable of
reproducing the correct Landau and Coulomb
limits. The Coulomb limit requires that 7'
=(|m|+2)? while the Landau limit imposes T
=m?. This point is discussed in more detail in
Ref. 16. The WKB quantization rule is

-p
J, F(E+p™ = Tp 2 = 5 %) 2 dp
1
=(n,+5)1/V2. (8)
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Note that in Eq. (8) »,=0,1, 2, ... is the radial
quantum number, related to the principal quan-
tum number by*®

n=n,+T"2+1, (9)

A simple change of variable [y =p/#?] in Eq. (8)
gives

vef , 01 T 1/2
nE+———————§[32y2> dy
fyl ( y  2nPy*

O L0 S

= TV AL
For Rydberg states the right-hand side of Eq.
(10) is approximately 7/v2. The integral in this
equation can be analytically evaluated in terms
of complete elliptic integrals.’® For 7=0 or n
>1 it follows directly from inspection of Eq. (10)
that »°E only depends on B. When 7 #0 the m de-
pendence of Eq. (10) arises from the 7/2x? term,
i.e., we have an m?/n® term exactly as in Eq. (5).
The WKB model provides an implicit equation for
the scaling, while our previous approach pro-
vides a more explicit one,

In Fig. 1 we compare the scalings for #’E as
given (i) by Eq. (10) with n=nc=n,+T">+4%, m
=0, and T=T¢ =14, (ii) by Eq. (1), according to
Feneuille, and (iii) by Eq. (6). This figure shows
the energy region near the ionization threshold
(E =0) and below it. This region has been exten-
sively studied by experimentalists and coincides
with the region where the scaling »®E has it
strongest variation. As is readily seen from the
figure, the agreement between the three scaling
laws is quite good. The region around the ioniza-
tion threshold is shown in more detail in Fig.
1(b). The relative difference between the scaling
as predicted by the two-dimensional WKB model
and Feneuille’s relation [our Eq. (1)] is note-
worthy. The two-dimensional model has been re-
ported by several experimental groups as repro-
ducing the measured data well, while Feneuille’s
relation was obtained through a direct fit of re-
cent high-resolution observations. In particular,
Feneuille’s relation and our Eq. (6) predict n2E
=0 at 8, =1.6, while the WKB model predicts 3,
=1.56. Because of the slight m dependence in
Egs. (5) and (10), we do not expect 8, to change
significantly with m. Clearly, a detailed experi-
mental investigation of these equations would be
of much interest.

In summary, we believe that Feneuille’s con-
jecture that #°E scales as a function of 3 is more
than a conjecture. We consider this new regular-
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FIG. 1. The quantity »°E vs g=n°w as predicted by
the three scaling formulas discussed in the text: Eq.
(10), “WKB»; Eq. (1), “Feneuille”; and Eq. (6),
“Method.” (a) The Coulomb to Landau regime. The
small percentage difference between the three formu-
las is barely noticeable. (b) Detail around the ioniza-
tion threshold (see text).

ity in the quasi-Landau spectrum to be closely
connected with dynamic properties of the electron-
ic motion along the z =0 plane. We have further
investigated how the m quantum number would in-
fluence the scaling and found the influence to be
negligible. As a last remark we observe that al-
though in the present work we concentrated on
the scaling of the quasi-Landau resonances, the
equations discussed here have a number of other
applications.?® As one example we quote the
study of hydrogenic excitons in magnetic fields.'®
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