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A quantum aotion variable is defined in the context of a quantum Hamilton-Jacobi
theory. The action variable c@n be used to find the exact bound-state energy levels of
a quantum system without solving an equation of motion for the system wave functions.
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The quantum-mechanical. energy levels of a par-
ticle oscil. lating in a potential. well are found,
e.g. , by solving the Schrodinger equation for,
simultaneously, the energy eigenvalues and eigen-
functions. In this note we show how the bound-
state energies of a quantum system can be ob-
tained without simultaneously finding the system
wave functions.

Our approach to the bound-state problem is
based upon the fact that, in classical. mechanics,
a short cut to the system frequencies is provided
by the action variable. ' This powerful property
of the classical action variable suggests defining
its quantum analog. Such a definition occurs in
the context of a quantum canonical transforma-
tion theory. "

We set up a quantum Hamilton-Jacobi formalism
appropriate as a framework for defining quantum
action-angle variables. The system considered
first is a particle moving on a straight line under
a force given by a potential V. The potential is
assumed to be a well capable of containing bound
states, and the energy eigenvalues considered
are those of the bound states. The Hamiltonian
1s

H=p +V(x),

where, in the Schrodinger representation, the

linear coordinate and momentum are x =x, p =(8/
i)8/bx, respectively. '

The theory is cast in terms of eigenvalues in-
stead of operators. The eigenval. ues for the line-
ar coordinate, linear momentum, angle variable,
action variable, and energy @rex, p, to, J, and

E, respectively.
The canonical. transformation equations con-

necting the linear and action-angle variables have
the form p =& W(x, E) &/x, tv ='d W(x,E)/&t, where
E =E(Z) and where W(x,E) is the quantum Hamil-
ton's characteristic function. ' Given these trans-
formation equations, the quantum Hanzilton-
Jacobi equation for system (1) is'

h e'W(x, E) eW(x, E) '
~X Bg

W(x,E) is subject to physical. boundary conditions
which complete its definition.

To define the action-variable eigenvalue we
generalize the classical definition. ' We define
the classical action variable as J, = (1/2m)
&&Jcdxp, (x,E), where the integral is counter-
clockwise around a closed contour C which en-
closes the two turning points and the section of
the real. x axis between them. The classical mo-
mentum function p, (x,E ) is defined as p, (x,E)
=[8 —V(x)]' 2. The two turning points x, , are de-
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fined byP, (x»E) =P, (x»E) =0, and the x plane
on which p, (x,z) is defined is given a cut from
x, to x,. p, (x,E) is that branch of the square root
which is positive just below the cut.

Following the classical discussion, the quantum
action-variable eigenvalue 4 is defined as

Z=Z(E) -=(1/2~) f,d xp(x,z), (3)

where the contour C is the same as in the clas-
sical case. The first of the transformation equa-
tions suggests def inlng a p (x,z )—= & W(x,z )/Bx via
W(x,z). Thus, using this definition and Eq. (2),
we define the quantum momentum function p(x, E),
for use in (3), by

58 x,z + p'(x, Z) =p, '(x,Z) =Z —V(x).

The definition of p(x,z) is completed by the cor
respondence-principle boundary condition,

p(x,Z)-p, (x,z), h-0, E fixed.

Before we apply (3), it is useful. to find the
eigenvalues Z. By studying (4) and (5) one finds
that inside the potential. mell. , i.e. , on the real x
axis between x, and x» p(x,z) has poles of resi-
due h/i; note, e.g. , that such a pol. e term satis-
fies (4) with the right-hand side set equal to zero.
Further, (4) and (5) imply that for the ground
state p(x,z) has no poles in the potential well,
for the first excited state p(x,z) has one pole in
the well, and so on; i.e. , the number of poles
p(x,E) has in the potential well gives directly the
excitation level of the system. Since these poles
are enclosed by the contour C, one has from (3)

Z=nS =J (E), (6)
where n = 0, 1,2, . . . counts the number of po1.es
of p(x,z) in the well. Note that (6), like (2)-(5),
is an exact quantum mechanical expression.

The properties of p(x,z) and Eq. (6) can be ob-
tained also from the connection between p(x, z)
and the Schrodinger wave function. First, as
shown in Ref. 7, the zeros of the wave function
in the potential well. correspond to the poles of
p(x,z). Thus, the n in (6) counts also the number
of zeros of the wave function. Second, from
Sturm-I iouville theory (see, e.g. , Ince, ' Chaps.
10 and ll) the zeros of the wave function in the
well. are correlated with the eigenvalues: The
ground state has no zeros, the first excited state
has one zero, etc. Thus, the n in (6) l.abels the
energy eigenvalues I'-' in ascending order as was
claimed above on the basis of (4) and (5).

The power of (3)-(6) is based upon the fact that

integral (3) for J(E) can be evaluated with the
residue theorem without obtaining a complete so-
lution for p(x,z) from (4) and (5). In order to
use the residue theorem to do the Z(E) integral it
is necessary to know the location of the singulari-
ties of the integrand. Three methods exist for
locating these singularities with only p, (x,z).
First, because of (4) and (5) we see that the fixed
poles of p(x,z) are at the same location as the
fixed poles of p, (x,E), while the moving poles of
p(x,z) are found along the cuts of p, (x,E). [An
example of a "fixed" pole is the pole atx=~ in
the oscillator problem (see below), while exam-
ples of "moving" poles are the poles in the po-
tential well which move when E is changed. ] Sec-
ond, the moving poles of p(x,z) (which correspond
to the zeros of the wave function; see Ref. 7) can
occur only on or near a l.ine defined by the equa-
tion f, dx'p, (x',Z) = real, where a is a turning
point (see Furry' ). Third, there exist theorems
on the location of the zeros of solutions of differ-
ential equations which provide a general method
for finding the poles of p(x,z) without solving for
p(x,z) (see, e.g. , Ref. 8, Chap. 21).

We illustrate (3)-(6) with four examples. The
first example is the harmonic oscillator with po-
tential V(x) =x'. The only pole of the integrand of

(3), outside of those in the potential well, is at
x = ~. Expanding p(x,z) for large x one has p (x,
E)=a,x+a, /x+. . . , and use of this expansion in

(4) gives a, '= —1 and —isa, + 2a,a, =z. Applica. —

tion of boundary condition (5) yields a, =+ i, and
so a, = (E —II)/2i. Thus, by the residue theorem,
the integral (3) for J(Z) is evaluated with the re-
sul. t Z=E/2 —h/2. Since J=nh, n=0, 1,2, ~ . .
[see (6)], the usual oscillator energy levels are
obtained.

As a second illustration of (3)-(6) we consider
the anharmonic oscillator. The action variable
is given by (3) with the momentum function P(x,
E) given by (4) and (5) with V(x) =x'+Ax'. The
exact energy levels are given then by (6).

The task is to evaluate the integral (3) for J(E). '

The system has four classical turning points:

—x, =x, = ([-1+ (1+4AE )' ']/2'' '

-x, =x, =l([1+(1+4/IE)' ']/2hj' ',
where x3 and x4 are unphysical. . In addition to the
poles between x, and x» p(x,z) has poles on the
imaginary x axis above x4 and below x3 ~ Thusp
when the contour C is distorted it encloses these
pol.es. One way of computing the J(E) integral is
as follows. One writes the classical momentum
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function as

P (x E)=(E —x'-~')"
= ~"x x(1-x '/x')'"(1-x'/x ')'"

The two square roots in P, (x,E) are expanded;
the result is P, (x,E) =Qb(n, x)a"x' '", where the
double sum is over r =0 to ~ and over n=-r to
~, and where a=x,'/x, '. (a is a parameter of
smallness. ) The quantum momentum function has
the form P(x,E)=pa(n, x)n"x' '", where the sum
is over r and n as before. The expansions of
P (x,E ) and P, (x,E ) effectively eliminate the poles
on the imaginary x axis, and store their effect in
the a(n, x). Next, the P, (x,E) and P( xE) expan-
sions are substituted into the right-hand and left-
hand sides of (4), respectively. By collecting
powers of n and x one obtains an equation giving
the unknown a(n, r) in terms of the known b(n, r)."
The action variable then follows from (8) and the

P( xE) expansion; the result is an asymptotic ex-
pansion of J(E) in powers of n: J(E)=i+a(l,r)a",
where the sum is over s=0 to ~."

We have compared our results for the ground
state for A. = 0.1,0.2, . . . , 1.0 with those found by
other methods. " For example, for A. =0.1, 0.4,
and 1.0 we find F. =1.065285, E =1.2048, and 8
=1.392, respectively, which agree with the values
in Ref. 11 to the significant figures quoted.

To consider motion in three dimensions under,
e.g. , a spherically sym. metric potential V(r) one
needs the three-dimensional form of (2); this is
just (2) with the replacement &/&x —V, where V

is the gradient operator. The resulting equation
is written in terms of spherical polar coordinates
r, 0,q, and this equation is separated by letting

W(r, 9,y ) = W„(r,E,X) + W (9, A. , c)+ W (y, c),
where &, ~, and c are the eigenvalues of the 8"„,
5'~, and 8'~ equations, respectively. By defining

p„(r,E,~)= SW„(r,E,~)/S-r ~d p, (9, X, c)=-SW, (9,
X, c)/8 9 one obtains the r and 9 quantum momen-
tum function equations'.

&my-'a(~'P„)/a~+P„'=E —V(r) —~'/~', (7)

—ih(sin9) '& (sin9Pe)/& 9+Pe'= Z —c/sin'9, (8)

where P„=P„(r,E,X), Pe =P 6 (9, &, c), and where
~J-=v'c=nP, n~=0, +1,+2, . . . . The~ and 9 mo-

mentum functions obey boundary conditions anal-
ogous to (5).

We consider first the angular motion using (8).
The 9 action-variable eigenvalue is Je = (1/2v)
x Jd9pe(9, A, c). The contour C for this integral
encloses the two turning points, defined by the

vanishing of the right-hand side of (8), and the
section of the real 0 axis between them. The in-
tegral is evaluated by letting y = —cot0 and work-
ing in the y plane. In terms of y the integrand
has first-order poles, apart from those in the
potential well, at y =+ i,~. By transforming Eq.
(8) to the y pl.ane and using the boundary condi-
tion at the points y = + i,~, the necessary residues
to evaluate Je are found. The result is J~ =[A.
+ (@/2) ]' -@/2 —J~' where the square root is
positive and where 4 ~' is the positive square root
of J~'. Inverting to obtain A, yields X= (J'e+J~')(Je
+J„'+5) = l(I+ 1)h', where I =ne +n ~' = 0, 1,2, . . . ,
since Jz =nz~, n —-0, 1,2, . . . , and since we de-
fine n

@
as the posltlve square root of n@, Thus~

the angular momentum eigenvalues are obtained.
The next and l.ast illustration is the Coulomb

radial motion. The momentum function equation
is (7) with V(r) =-g/r; g is a positive, real con-
stant. The radial. action-variabl. e eigenvalue is
J„=(1/2m) fd~P„(r,E,A), with X given previousl. y
and with the integral contour C enclosing the two
turning points, given by the vanishing of the right-
hand side of (7) with V = -g/r, and the section of
the real ~ axis between them. The only first-
order poles, aside from those in the potential
well, are at r = 0,~. With use of (7) and the
boundary condition, the necessary terms in P„(r,
E, X) at r = 0,~ are found, and the integral evalu-
ated by the residue theorem. The result is 4„
= —th h+g/2K -E. Since-J„=n„h, n„=0,1,2, . . . ,
one obtains the Coulomb energy levels.

The above four exampl. es show that quantum en-
ergy levels are controlled by the singularities of
the quantum momentum function just as classical
frequencies are controlled by the singularities of
the classical momentum function.
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