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Evidence for superconductivity in (BEDT-TTF),(ReOy, [where BEDT-TTF is bis(eth-
ylenedithiolo)tetrathiafulvalene] near 2 K for pressures above 4 kbar is reported. This
is the first unambiguous observation of superconductivity in a sulfur-donor organic sys-
tem. At higher pressures the transition temperature decreases rapidly, dr,/dP~—0.3
K/kbar. At low pressures this material exhibits a first-order metal-insulator transi-
tion, postulated to result from a change in the arrangement of the anions which are or-

dered at room temperature.

PACS numbers: 74.10.+v, 61.65.+d, 71.30.+h, 72.15.Eb

We report the discovery of superconductivity
in a new family of organic conductors based on a
sulfur-donor organic molecule. This is only the
second organic system in which superconductivity
has been observed. The overwhelming majority
of organic conductors are unstable at low temper-
atures to periodic lattice distortions leading to an
insulating ground state.! Over the past decade
extensive studies on a wide range of structural
and chemical types of organic linear-chain sys-
tems were carried out with the important aim of
suppressing these instabilities and stabilizing a
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low-temperature metallic or superconducting
state. Recently this goal was finally achieved for
several members of the (TMTSeF),X family of
compounds (where TMTSeF is tetramethyltetra-
selenafulvalene and X is, for example, PF,
TaF,, ReO,, ClO,) with the observation of super-
conductivity near ~1 K for pressures above some
critical pressure, P, ~1 bar to 12 kbar.?"® The
reason why these particular compounds become
superconducting is unclear, although it may be
related to their atypical crystal and chemical
structure. Indeed the related isostructural series
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of materials, (TMTTF),X (the TMTTF molecule
is identical to TMTSeF but with the Se replaced
by S) has similar phase diagrams but with sub-
stantially higher P (~25-45 kbar) and no conclu-
sive evidence of superconductivity.®'” It is there-
fore clearly of interest to find other organic sys-
tems which are superconducting in order to better
understand the mechanism for organic supercon-
ductivity and perhaps raise T .

Recently Saito et al.® prepared a ClO, salt of
bis (ethylenedithiolo)tetrathiafulvalene (BEDT-
TTF) with inclusion of some solvent in the crys-
tal structure. Concurrently we have electro-
chemically® synthesized various salts of BEDT-
TTF.° Of interest here are the ReQ, salts. A
number of distinct crystallographic phases were

_obtained and characterized by x-ray crystallog-
raphy, chemical analysis, and ESR. From tetra-
hydrofurane (THF) three phases were found; thin
needles of chemical formula (BEDT-TTF),-
(ReO,),(THF), and two phases growing as plates
of form (BEDT-TTF),(Re0,), and (BEDT-TTF),-
(ReO,),. All three phases could easily be identi-
fied from their distinct morphologies. Chemical
and x-ray analysis show that neither plate phase
includes solvent. The electrical properties and
behavior under pressure of these phases are
very different.

The 4:2 salt (BEDT-TTF),(ReO,), becomes
superconducting below ~2 K for pressures above

~4 kbar. In Fig. 1 we present evidence for super-

conductivity in this compound from four-probe
resistance measurements at 7 kbar as a function
of magnetic field. The resistance drops to zero
within experimental accuracy below the transi-
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FIG. 1. Resistance [normalized to R(3 K)] vs temper-
ature curves along the a axis of (BEDT-TTF),(ReO,),
in zero field and for various magnetic fields applied
along the transverse c* direction.

tion; T,~1.4 K, defined as that temperature
where R is half the normal value. At 4 kbar we
observe an onset of superconductivity near 2 K
although the transition is considerably broadened.
The possibility that the superconductivity we ob-
serve is filamentary can be ruled out because we
measure critical current densities of order 0.1
A/mm?, which are eomparable to those found in
the (TMTSeF), X superconductors® for which the
bulk nature of this phenomenon is well estab-
lished®.

The structure of (BEDT-TTF),(ReO,), is shown
in Fig. 2 and bears some similarity to that of the
(TMTSeF),X salts.® In particular the BEDT-TTF
molecules are “zig-zagged” along the g axis,
providing cages in which the ReQO, anions sit and
so determining the stoichiometry of the material;
there is the possibility of strong S-S bonding be-
tween BEDT-TTF molecules along the b direction
but direct interactions between these molecules in
the c¢ direction are clearly much weaker (note that
the BEDT-TTF molecule contains twice as many
S atoms as the TMTTF molecule). The structure
belongs to space group P1 with unit cell g="17.78
A, b=12,59 A, ¢=16.97 A, =73.01°, §="179.89°
y=89.06°, V=1565 A.* However, there are two

- important differences compared with the structure

of the (TMTSeF),X salts.>'° Firstly, whereas the
TMTSeF molecule is almost planar, the terminal

FIG. 2. Projected left-eye view of the structure of
(BEDT-TTF),(ReOy, along the organic molecular stack-
ing axis, a, showing the BEDT-TTF molecules (shaded
and open circles correspond to S and C atoms, respec-
tively; H atoms are not shown) and ReO, anions.
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methylene (CH,) groups at either end of the BEDT -
TTF molecule are positioned well out of the plane
of the rest of the molecule. Secondly, the ReO,
anions are ordered at room temperature; in none
of the TMTSeF or TMTTF salts is this the case.®
The room-temperature g-axis conductivity of
(BEDT-TTF),(ReO,), at 1 bar is ~200 (2 cm)™,
comparable to the most conducting of the
(TMTTF),X salts.!' Conductivity was measured
with use of a standard four-probe lock-in tech-
nique, with silver paint contacts of resistance a
few ohms. Data at 1 bar are shown in Fig. 3; the
material shows metallic behavior to 81 K where
there is a metal-insulator (MI) transition. The
resistance abruptly increases by two orders of
magnitude at 7T',,; demonstrating that the transition
is of predominantly first-order character. The
resistance is activated below the transition with
an activation energy, A, given by 24 /BT ,;~13.
Measurements of conductivity anisotropy in the
a-b plane were made with the Montgomery geom-
etry giving a value at 300 K of ¢,/0,~20. This
ratio varies little as the temperature is de-
creased to Ty, and is comparable with the gen-
erally agreed value of the analogous anisotropy
ratio in the (TMTSeF),X salts.® Measurements
were made as a function of pressure in a simple
Be-Cu piston cylinder clamp cell, with the sam-
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FIG. 3. Resistance vs temperature curves for (BEDT-
TTF),(ReOy), at 1 bar and 7 kbar. The resistance is
normalized with respect to R(300 K, 1 bar) and a value
of da/dpP of 20%/kbar has been used to normalize the
high-pressure data.
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ples contained in a Teflon cell filled with hep-
tane. As pressure is increased the MI transition
temperature falls and above ~7 kbar is sup-
pressed. A resistance curve at 7 kbar is given
in Fig. 3 with data below 3 K shown earlier in
Fig. 1. The sample has a high resistance ratio
of ~300, indicative of good crystal quality. The
resistance does not saturate at low tempera-
tures but continues to fall to ~2 K below which
temperature the resistance drops to zero as
previously described. The normal resistance is
restored with the application of a magnetic field.
Data are shown in Fig. 1 for field applied along
the c* direction, giving a critical field of ~800 G.
The critical field is about 2 times higher in the b*
direction. All these features are also seen in the
(TMTSeF),X materials to a similar degree.
There is a substantial transverse magnetoresis-
tance, but in contrast with the (TMTSeF),X salts
it is largest along the b* direction. These re-
sults will be described in more detail elsewhere.
Similar results have been seen in about a dozen
crystals for various applied pressures and are
summarized in the phase diagram shown in Fig.
4. In particular the superconducting transition
temperature falls rapidly with pressure (d7T, /dP
~~0.3 K/kbar). This is a very unusual effect
whose origin is unclear. The phase diagram sug-
gests that T, is somewhat depressed in the criti-
cal region (4-6 kbar) perhaps through competi-
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FIG. 4. Phase diagram of (BEDT-TTF),(ReOy),. The
shaded region corresponds to that in which large hys-
teresis is observed on cooling and warming. The open
circles correspond to onset of superconductivity.
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tion with anion ordering, a mechanism previously
postulated in the (TMTSeF),X system.? For pres-
sures close to 6 kbar there can be a substantial
increase in resistance well above T, and the
superconducting transition is considerably broad-
ened. Moreover in this pressure region the re-
sistance shows substantial hysteretic effects sim-
ilar to those previously seen in (TMTSeF),ReO,
(Ref. 12) and associated with anion ordering.
Changes in the ESR spectrum at T are also
similar to those seen at anion ordering transitions
in the [TMTSe(T)F],X salts. It thus seems likely
that the MI transition seen below ~7 kbar in the
BEDT-TTF salt is associated with some kind of
anion rearrangement, consistent with the high
value of 2A /BT mentioned above.

In summary, we have found superconductivity
in a member of a new class of organic conduc-
tors based on a sulfur donor, BEDT-TTF. At
low pressures (BEDT-TTF),(ReO,), exhibits a
metal-insulator transition which we suggest is
associated with some kind of anion rearrange-
ment. Above and in a critical pressure regime
(~4-6 kbar) superconductivity is observed with
onset of superconductivity near 2 K at the low-
est pressures. T, is depressed in the critical
pressure regime perhaps through competition
with the low-pressure insulating instability and
thus the possibility of higher superconducting
transition temperatures in other BEDT-TTF
salts cannot be ruled out. The variety of BEDT-
TTF:X phases may permit the correlation of
the existence of superconductivity with a par-
ticular structural type. This is an important
distinction from the (TMTSeF),X family of com-
pounds for which only a single phase is known.
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