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is a trivial consequence of geometry. The lack of
coupling at k =0 in (8) and (9) is due to particle and
spin cons ervation.
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An efficient Monte Carlo procedure is applied to the study of the kinetics of low- and

high-Q-state Potts models quenched from an initial high-temperature (T» 7,) state to

very low temperatures (7=0). After an initial transient period, the mean domain size,
R, increases algebraically with time as R- Ct". The exponent n decreases from 2 for
Q =2 (Ising model) to 0.38 for large Q. The change in n is attributed to a coalescence
process which becomes increasingly effective with decreasing Q. For large Q, the pre-
factor C is proportional to Q~~ .
-PACS numbers: 68.55.+b, 05.50.+q, 61.50.Cj, 75.60.Ch

The kinetics of domain growth is a subject of
considerable interest in the fields of surface
science" and metallurgy. ' Both phenomenologi-
cal4 ' and field-theoretic approaches' have been
developed to explain the growth of domains in the
ordering of alloys (e.g. , Fe-Al, Cu-Au, etc.)
with two equivalent sublattices quenched from
high to low temperatures (T & T,). The kinetics
of domain growth has also been studied in binary
alloys by Monte Carlo (MC) techniques with a sim-
ple Ising model. "'" All of the above investiga-
tions showed that the characteristic length R of a
domain grows (or shrinks) algebraically with
time [i.e. , R(&) - t'"]. This growth law has been
experimentally observed in various alloys. ' In
recent years, the kinetics of domain (or island)
growth of adsorbed atoms on surfaces with more
than two degenerate ground states has also been
investigated. In a number of MC studies on
chemisorption' "'" and physisorption systems,
domains of multiply degenerate ground states
have been reported to grow very slowly. Analyti-
cal results on simple domain geometries have
also suggested that the characteristic domain size
grows slowly, as a logarithmic function of time. '"
A similar slow evolution has been observed by
Lagally etc/. ' for ordering of oxygen atoms on a
tungsten substrate [0/W(110)]. However, it is
difficult to conclude from the experimental studies
whether this slow growth is due to surface hetero-
geneities (steps, terraces, vacancies, etc.) or to
more basic topological effects. A similar situa-

tion is encountered in the experimental study of
grain growth in polycrystalline materials. "

In this Letter, we report the results of our
computer simulations on the kinetics of a ferro-
magnetic Q-state P otts model which is rapidly
quenched from»& T, to T = 0. For low Q (Q
=2, 3, 4, 6), Potts models provide a good approxi-
mation to many chemisorption and physisorption
systems, while for high Q, this model can be
used to study the kinetics of continuous (infinitely
degenerate) systems such as grain growth in a
polycr ystalline material.

We study the Q-component ferromagnetic Potts
model,

H= -~Z &s;, s ~

NN

where'; is the Q state of the spin on site i (1
~s; ~ Q) and &s, s,. is the Kronecker delta. The
sum is taken over nearest-neighbor spins and ~
& 0. Using MC techniques, we study the domain
growth of systems originally quenched from a
high temperature to a very low one. To reduce
the boundary effects, we employ very large sys-
tems (200&&200 sites on a triangular lattice) with
periodic boundary conditions. Standard MC proce-
dures, in which a randomly chosen spin is al-
lowed to flip into any of the Q —1 other orienta-
tions, was found to be very inefficient since, for
large Q, the probability of acceptance of an arbi-
trary spin flip is very small. We have employed
a variant" of the efficient MC procedure of Bortz
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FIG. 1. The evolution of the quenched domains for Q = 12 at various times (in units of MC steps per spin) as in-
dicated at the bottom of each snapshot. The circles indicate the location of a region in which coalescence is about
to occur.

et al. ,
""where each time step is scaled by the

probability that an attempt wi)1 produce a flip.
Results obtained by this efficient procedure are
found to be in excellent agreement with standard
MC techniques. "

In analyzing the results of the present simula-
tion, we monitored the mean area per grain
(|4(&)), which is simply related to B(t), the char-
acteristic domain size. While R(&) is most fre-
quently calculated via structure-factor analyses
andA(t} via cluster-enumeration techniques, we
have adopted a new, much faster topological
form of analysis. Using a generalized form of
Euler's formula, "we calculate the total number
of domains, D(t), in terms of the number of
edges, E(t), and vertices, V(t):

=12 and Q =64, respectively. Results for Q =3
and Q =6 are presented elsewhere. " The mor-
phology of the domains for high Q is significantly
more regular and equiaxised than in the low-Q
case. It is also evident that the domains in the
Q =12 case grow quite rapidly relative to the Q
=64 case. When two grains of like Q touch, they
coalesce into one large grain. The point where
the two grains of like Q meet is characterized by
large local curvature, and, therefore grows ex-
tremely rapidly. The frequency with which co-
alescence events occur is observed to increase
with decreasing Q, as is born out in Figs. 1 and
2.

The average domain radius is commonly fitted
by either

am-Z, =at, (4)

Further, for an infinite system or one in which
periodic boundary conditions are maintained, we
know that every edge is two-ended and each ver-
tex three-rayed, implying 2E(t) =3V(t), and there-
fore D(t) =V(t)/2. Equivalently, the mean area is
related to the total

arear'~

by

(4(t)) =~ /V(t). (3)
In Figs. 1 and 2, we display instantaneous snap-

shots of the evolution of spin configuration for Q

where ~, is the characteristic domain size at t
=0, or

R =Ct". (5)

For large times, when R»~„ the two expres-
sions are equivalent and ~ =1/n. The exponent
can be most easily extracted by using Eq. (5) in
the long-time limit (inset, Fig. 3) ~ The accuracy
of the exponent can be verified by replotting the
data over the entire time range in accordance
with Eq. (5) (Fig. 3). The exponent n as a func-

MCS = 2000 MCS = 5000

FIG. 2. Same as Fig. 1 for Q= 64.

MCS = 12000
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FIG. 3. 8 -Bo vs time where m equals the classi-
cal value, 2 {open circles), and that derived from the
slope of the inset, &3 {filled circles). Inset: The char-
acteristic domain radius R, as a function of time {in
Monte Carlo steps), where the data have been averaged
over five configurations.

tion of Q is shown in Fig. 4. The exponent n de-
creases linearly in the range 6 ~ Q ~ 20. On ex-
trapolating this linear behavior backwards, we
find the usual result' ' of n equal to 0.5 for the
Ising model (Q=2). For Q& 26, we findn to be
essentially constant, at a value of 0.38+ 0.01= -', .
For large Q the prefactor, C, is found to vary as
Q- 1/2

The change in the exponent, n, from ~ for the
Ising case to 0.38 for highly degenerate systems
reflects a possible change in the fundamental

growth mechanism. As is seen in Figs. I and 2,
the effect of increasing Q is to decrease the num-

ber of coalescence events. In fact, for Q infinite
no coalescence events can occur. For low Q, on

the other hand, multigrain interactions are domi-
nated by coalescence. The frequency of coales-
cence should be related to the probability of a do-
main having a second-nearest-neighbor domain
of like Q. This probability may be estimated as

P(Q) =1/Q[1 —(1 —1/Q) ],
where & is the mean number of second-nearest-
neighbor domains. The asymptotic approach of
P(Q) to zero for increasing Q essentially elimi-
nates the Q dependence of n (see Fig. 4). For the
present simulation, n(Q) is nearly constant for
Q & 26, suggesting that an infinitely degenerate
system can be simulated with a (small) finite-Q
Potts model.

The present results at & =0 on the triangular
lattice are not in accord with the predictions of
Lif shitz and Safran" in that the growth exponent,
n, is nonzero. On the other hand, our results on
the high-Q Potts model on square lattice do show
n = 0 at T =0. We believe that these differences
can be understood by considering the driving
force for domain growth. In the continuum mod-
els, the driving force is provided by the decrease
in boundary length accompanying reduction of
boundary curvature. In lattice models, the curva-
ture is discretized as kinks on the boundary. As
illustrated in Fig. 5(a), boundary vertices are
sinks for kinks on the square lattice. However,
on the triangular lattice, kinks are transmitted
through the boundary vertices [Fig. 5(b)]. There-
fore, unlike on the triangular lattice, the driving
force for domain growth can be quickly relieved
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FIG. 4. The domain-growth'e~onent, n, as a function of Q, where the data for each Q value have been averaged
over five configurations.
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FIG. 5. (a) A kink moving down a boundary towards
a vertex on the square lattice. The dotted line shows
the prior boundary location. {b) Same as in (a), except
for a triangular Iattice. After the kink reaches the ver-
tex, it proceeds along a different boundary.

on the dquare lattice. Normal, or curvature-
driven, domain growth corresponds to the mutual
annihilation of oppositely signed kinks. For in-
creasing temperature, the effective kinetic expo-
nent for the square lattice approaches the ob-
served value for the triangular lattice, which is
found to be temperature independent (below T,).
The unpinning at finite temperatures is attributa-
ble to the thermal generation of kinks.

Experience with Ising models~o. ii and previous
domain growth theories' suggest that the expo-
nent, 'n, is identical for d =2 and 3. Verification
of this conjecture mill be the subject of future
inquiry.

In conclusion, we find that the characteristic
length &(t) for the high-9 Potts models scales as
t ", instead of the classic t" observed in Ising
models and domain growth theories. Our results
suggest that high-Q Potts models can be used to
simulate continuous (infinitely degenerate) sys-
tems, such as grain growth in polycrystalline
materials. In fact, experimental observations
of grain growth in metals typically yield kinetic
exponents less than ~,"which is in accord with
our findings.
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