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New Sacklund Transformations and Superposition Principle
for Gravitational Fields with Symmetries
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Vector Mcklund transformations which relate solutions of the vacuum Einstein equa-
tions having two commuting Killing fields are introduced. Such transformations general-
ize those found by Pohlmeyer in connection with the nonlinear o model. A simple alge-
braic superposition principle, which permits the combination of Mcklund transforms in
order to get new solutions, is given. The superposition preserves the asymptotic Qat-
ness condition, and the whole scheme is manisfestly O(2, 1) invariant.
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In recent yeaxs, several methods have been
proposed in order to construct physically mean-
ingful exact solutions of the Einstein equations
of general relativity. Much work has been done
in the special case of vacuum gravitational fields
possessing two Kilbng vector fields which com-
mute' '; this includes, in particular, stationary
systems with axial symmetry. A technique to
produce solutions with an appropriate asymptotic
behavior, and a prescribed mass and angular mo-
mentum multipole structure, was found in Ref. 7.
Alternative approaches to the subject include the
application of the inverse scattering technique to
this case, ' and the use of Backlund transforma-
tions. ' It is the purpose of this Letter to intro-
duce a new type of vector BB,cklund transforma-
tion, which admits a rather simple, closed ex-
pression, and an associated superposition princi-
ple. The latter provides an easy way of algebra-
ically combining two Backlund transforms of a
given solution in order to get a new solution. It
is found that, in the case of stationary axisym-
metric systems, such a superposition preserves
the asymptotic flatness condition automatically.

The computations involved in getting a new solu-
tion through this method are quite simple, and
the whole scheme is manifestly 0(2, 1}invariant.

If the gravitational field admits a two-parame-
ter Abelian group of isometrics, and if one as-
sumes the existence of two-surfaces orthogonal
to the group orbits (' orthogonal transitivity },
then the Einstein equations R„,=O separate into
two sets: One of them is a system of integrable
equations for a single scalar function, and the
remaining set may be expressed as a single par-
tial differential equation for a three-vector g. In
case the two Killing fields are spacelike (e.g. ,
cylindrical symmetry), the resulting equation is'

+ (T I2T)q + (~ I2T)q, = (q, 'q )q,

with

~(u, v) =U(u) + Y(v), (2)

where U and V are arbitrary. |Here and in the
sequel, subscripts denote ordinary partial deriva-
tives; the scalar product of two vectors q =(q',
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q', q') and p =(p', p', p') is p q =(p'q' + p'q' -p'q');
u =z(p+t), and v =&(p —t).] It should be stressed
that the components of the vector q appearing in
Eq. (1) are algebraic combinations of the coeffi-
cients of the space-time metric.

The constraint q'=-1 in Eq. (1) may be solved
by means of a single complex function f, param-
etrizing q as

q=(f +g) '(-f+ g, 1 +fg, l -fg), (6)

where f and g are now rea& functions. Equation
(5} reduces to the following pair of equations:

2fgf(ofL 6' +g~ fK
+

2T fL (Va)

q(f) arbitrary. In the present case, a solution of
the constraint q' =1, closely resembling (3), is

q=(f +f*) '(i(f -f*),1 ff*-,1+ff*).

With use of (3), Eq. (1) reduces to

(3)

(Vb)

(4)

f =Sk '+in, e =@+i/,

where p is related to by

=S 9r'&u P„=,-S 'b'~

For stationary axisymmetric systems, the
relevant equation [analogous to Eq. (1)] may be
shown to be'

Tf Tg~ 2
qg ge +—qge + qg- —(qg qge)q q = I (5)

where t; =~(p + i&) and 7'(L, f*) =g(r) +g*(f*), with
~

Equation (4) is formally identical to the Ernst
equation' in the hyperbolic case. It should be
noticed, however, that f is not the Ernst poten-
tial a' of the system. The relation between f and
e is easily worked out by writing the metric in
the Lewis-Papapetrou form"

ds' =h(d e+ (ed')'+S'b 'dy'+ e "(dp'-dt'),

where 0, , and v are functions of p and t, and S
may be taken as S =p =u+ v. The functions f and
& are then

With the chosen parametrization (3) and (6), the
O(2, 1) invariance of Eqs. (1) and (5} is reflected
in the following SL(2,R) invariance tr reforma-
tion of Eq. (4):

f- (af + ib)/(-i cf +d)

and of Eqs. (Va) and (Vb):

f- (af + b)/(cf +d), g- (ag —b)/(- cg+ d),

where a, b, c, and d are real constants such that
ad —bc =1.

Backlund transf ormations have been introduced
for the Ernst equations corresponding to gravita-
tional fields of the type considered in this Letter, '
and solutions of the Einstein field equations have
been generated through their use."' ' On the
other hand, it seems desirable to have a solution-
generating technique directly applicable to the
vector equations (1) and (5), as q may be simply
read off the metric. By the exploiting of the close
connection between such equations and the field
equation for an O(2, 1)-invariant nonlinear o mod-
el in two dimensions, vector Backlund transfor-
mations generalizing those introduced by Pohl-
meyer in Ref. 13 may be found. For Eq. (1), the
transf ormation is

q. +p. =[1/2(U+ ~)][(U+V)q. p —U.]q+ [I/2(U+~)][(U+ V)q ~ p. —U.]p,

q„-p„=—[1/2 (V —A )][(U +V)q„p + V„]q + [1/2 (V —X)][(U + V)q .p„+ V„]p,

together with the compatible constraints

qa =p' =- 1, p ~ q =(U —V+2g)/(U+ V),

(8a)

(8b)

where A, is a real constant, with U and V the functions appearing in (2). Given a solution q of Eq. (1),
a new solution P may be found by integrating Eqs. (8a) and (8b). [The integrability condition for (8a)
and (8b), considered as a system of partial differential equations for p, is satisfied by virtue of Eq.
(1).] The corresponding transformation for Eq. (5) is

qg + ip~ =[1/2(@+i')][(q+G*)pg q —iqg]p —[i/2(0+ i~)][(q+ 6+) qp -iraq]q (1

with

q'=1, p'=-1, q p =[i(n-n") —2&]/(n+q*).
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2(A —p, )
q+g* 1+p ~ s (13)

Equation (13) may be considered as a kind of non-
linear superposition principle. A detailed deriva-
tion of Eq. (13) will be published elsewhere. A

similar relation holds for Eqs. (8a) and (8b).
The following important aspect should now be

noticed: As there exists a manifest duality be-

Equations (8)-(ll) are manifestly invariant under
p —Rp, q -Rq, with a constant R G O(2, 1). Notice
that, while Eqs. (8a) and (8b) transform a solu-
tion of Eq. (1) into another solution of the same
equation, Eq. (10) carries a solution of (5) into a
solution of the equation

ping +(T4/~~)p~ +(~K /2T)pc=(pg pg )p,
(12)

10

Thus, in order to go back to solutions of Eq. (5),
a second Backlund transformation (10) must be
used. Fortunately, no further integrations are
necessary, because of the existence of a permuta-
bility property, "by means of which the second
Backlund transform may be computed algebraical-
ly: Suppose Eq. (10) has been integrated for two
different values + and p, giving the transformed
vectors P and s, respectively. It may be easily
shown that there exists a vector ~, such that
is simultaneously a Backlund transform of P with
parameter p, and of s with parameter ~, and
such that satisfies Eq. (5); furthermore, there
exists a simple algebraic relation among q, p, &,
and :

tween p and q in Eqs. (10) and (11), one may take
the point of view that the equation to be solved is
Eq. (12). This is motivated by the fact that the
Ernst equation for the potential & of a stationary
axisymmetric system is'

e ~ q. + (T t /2T )e ~* + (7.~;/2T )e )

=2m ~eq*/(e +e) (14)

which may be cast in precisely the form (12) by
def lDlng

p = (6+6'+) (i(& —f +)~ 1 —t6+~ 1 +6t +).

The starting point will now be the vector P; a
new solution &' of Eq. (14) may be obtained by
means of Eq. (10). As a result of its symmetry,
the superposition (13) is equally applicable in this
case. It may now be written as

~ =P+ ~2(A-l )/(6+ 9*)(~ q-1)~' ', (1.5)

where q (respectively, w) is a Backlund trans-
form of p with parameter & (respectively, P).
The new Ernst potential is

e'=(1-is')/(s +s ),
where s = (s', s', s'). The superposition formula
(15) has the additional interest of preserving the
right asymptotic conditions. In order to see this,
it is convenient to find the general solution of
(15) starting from Minkowski space, described
by p = (0,0, 1). An asymptotically flat space will
approach this value, and the conclusions that
follow will also apply in that case. Integrating
(10) with q(f) = t;, so that T p (using Weyl canon-
ical coordinates p and z), one gets

q =(& +&*) ~(2 cosa(t; + iA)~ 2(L* —iX)', 2 sin&(K +iA) (L*—iA), —i(L —f*)+ 2A}, (16)

where & is a constant of integration. Similarly,
we find ~ by substituting & - P, o' Pin (-16).
After computing s according to (15) we get the
following expression:

$+6 S —ZS 2 qg(e' r, -e'"r,), (17)

where r, =(r'+ b'+2br cos&)'", r, =(r'+a'+2ar
&icos&)"', p =r sin8, z=r cos9, a =2A, and b =2p.
From (17), one obtains the following expansion
for &' in terms of the radial coordinate r, show-
ing the correct asymptotic behavior:

2(a —b) 1 11+., ;g ze, —+0
ice -e j r r

In order to get a real coefficient in the 1/r term,
we may either set P = —n or subject &' to an Eh-

cosa ~'+i sin~
z sin&& + cos&

with an appropriately chosen o. Both procedures
leave the Eeroth-order terra invariant. The Kerr
solution, (1+ &')(1 —~') ' =x cosv+iy sinv, is ob-
tained as a special case of (16) by setting a = —b

=k, n = 13 =v —~/2—, and defining x +y =k '(z'
+ p2+k2+2kz)"2, x -y =k '(z'+ pR+ k2 —2kz)"'.

Further work on other applications of the pres-
ent method, and on its relations with existing
techniques for generating solutions of the Einstein
equations and of the equations for non-Abelian
gauge fields, is currently in progress.
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Data are presented on the Qross —LIeweIIyn Smith sum rule obtained from combined
narrow-band neon and Freon bubble-chamber neutrino-antineutrino experiments. Re-
markably no significant deviation from the parton-model prediction for the sum rule
is observed at very low values of q'~ & GeV . Limits on the effective @CD scale param-
eter A and on the magnitude of the twist-4 correction are set. The best fit, neglecting
higher-twist contributions, gives A = 92'36 MeV.

PACS numbers: 13.15.Em, 12.35.Eq

In the quark-parton model the neutrino-nucleon
structure function I', measures the difference of
the x distributions of the quarks and the anti-
quarks in the nucleon:

dN~, dXq

where x is the usual Bjorken sealing variable.
The integral of E, measures the number of "va-
lence quarks" per nucleon, equal to three in the
quark model:

1

J +,(x) dx = N, N; =3 valence -quarks. (2)0 ~ 00
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