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Fluctuations in the Temperature Dependence of the Resistance of a one-Dimensional System
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New effects are predicted to occur in the resistance of a one-dimensional system when
the inelastic scattering time becomes longer than the transit time of a carrier through
the system. While the mean behavior of g(T) is the same as in the multiple-hopping re-
gime, the fluctuations in R(T) change dramatically, depending logarithmically on the
length. The behavior of A(T) can give a detailed reconstruction of the microscopic eigen-
states of the system.
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(In@)= In(Q). (2)

It may be expected that for T ~ 0, thermal aver-
aging effects, which are implicit in multiple-
hopping descriptions of conductance, cause the
more severe fluctuations in R to be removed, so
that the random variable R(T) would satisfy Eq.
(2) rather than Eq. (I).' This expectation is like-
ly to be true if the inelastic scattering time is
much shorter than the elastic transit time of the
carrier through the one-dimensional conductor:

«L/v, where v is the carrier velocity and L
is the length of the sample.

In this Letter we explore the properties of
R(T) under the opposite condition, 7»L/v.
While it appears that no experiment is presently
capable of reaching this regime, 4 it seems likely
that it will be explored in the future. This condi-
tion should be satisfied at very low temperatures:
T «T,/[1 (Ln/a) J'=—T, ' where a is the dimension
of a trap and T, is the characteristic tempera-
ture in the Mott law'.

R(T) ~ exp[(T, /T)'~'] .

It is now well established that the resistance R
of a one-dimensional system at T =0 displays
large fluctuations even between macroscopically
identical samples. "R(T=O), a macroscopic
observable, is strongly influenced by microscop-
ic fluctuations in the random potential of the re-
sistor. Mathematically this unusual behavior is
typically manifested by the relation'

2(inR) = in(R).

(Angular brackets denote the average over an
ensemble of samples. ) An ordinary random
variable Q with small fluctuations obeys quite a
diff erent relation:

We find that the mean behavior of R(T) at these
low temperatures continues to obey Eq. (3). How-

ever, the two regimes differ in the physical
origin of this behavior and in the magnitude of
fluctuations which R(T) displays. In the elastic
conductance regime, we find p =-(L/L, )'(T/
To)[(I.D/L) ln(R) —1] to exhibit very unusual
logarithmic (in L) relative fluctuations:

51n y -
121n[ (L /L) (T /T 0)

'~'] )

(L, is the localization length. ) If T» T, these
fluctuations are more conventional: 6 in@ vr /-
L. We will show that R(T) for T«T continues
to obey an equation similar to (1), and that these
macroscopic fluctuations in the measurable quan-
tity R(T) can provide detailed information about
the microscopic, quantum mechanical properties
of the resistor.

It has been shown that at T=O, the conductance
of a disordered one-dimensional system G= I/R,
or equivalently (through Landauer's formula') the
transmission coefficient t contains huge reso-
nances which occur at those energies coinciding
with an eigenvalue &„ of the random system. "
The strength of these resonances is determined
by the real-space distance A„between the posi-
tion of this (localized) eigenstate and the mid-
point of the resistor. In particular, the width of
these transmission resonances is 5e„~exp(-2

,'I. —A„~ /L, ) and —the resonance transmission
,„(=G„,„)= exp(-4A„/I-, ): away from the

resonance i —=exp( 2L/L, ), expone-ntially smaller
than t

If w;„»L/u, then the conductance for T w 0
may be obtained immediately from t(T=O):

G(T w0) = J (-&,/ee)t(e)dc.
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Here n F is the Fermi distribution. The physical
restriction implied by Eq. (4) is that the current
carrier must pass through the entire sample in
a single, qua. ntum mechanical tunneling event.
The temperature dependence of G(T) is thus due
solely to the Fermi distribution which is estab-
lished in the metallic conductor attached to the
ends of the resistor. Therefore the tunneling,

which is restricted to occur at the Fermi level
E F at T = o, is permitted in a range of energies
-7 around ~F for 7+0.

Since t(e) is exponentially larger at eigenstate
resonances than elsewhere, the only significant
contributions to the integral in Eq. (4) will come
from the eigenvalues &„. The contribution of the
nth level from the Fermi level will be

n n

The exponent in Eq. (6) is a, competition between
the Fermi function factor and the strength of the
transmission. For one particular e„ this expres-
sion will be greatest; because it appears as an
exponent, this maximum value will completely
dominate Eq. (4), and a very good approximation
for G(T) is'

G(r) =exp( ) exp max (- ' " ' -- ") .

(6)

A convenient approximation which simplifies the
analysis below is the replacement of ( e„—e F i,
the distance of the nth farthest level from the
Fermi level, by n Ae, where the average dis-
tance between eigenvalues Ae -- 1/Lp, (e), with

p, (e) the electronic density of states. This ap-
proximation is quite good for n ~&1, which is the
regime of interest. We can also put the second
part of Eq. (6) in a convenient dimensionless
form. The statistical homogeneity of the random
system guarantees that the distances A„are uni-
formly distributed between 0 and L/2. (We have
confirmed this property of A„by detailed num-
erical study. ") This suggests defining a new
scaled variable x„=(2/L)A„, so that z„ is a uni-
formly distributed random variable between 0
and 1. With these Eq. (6) becomes

-n L
G(p) =exp(- —exp max

0 n p IT

This may be put in a compact form:

G( 1') = e e exp[-(C/M) y(M) ],
y(M) = min (n +M~„) . (8b)

Here C —= L/Lo and M =—p, L T/Lo = (L'/Lo') T/To.
Equation (7) provides an accurate approxima-

tion for Eq. (4) so long as C'»M»C. This equa-
tion is quite amenable to both accurate numerical

and analytical study of the statistical properties
of G(T), or equivalently of q(M). As a first step,
the mean value of y(M) may be estimated by
quite a simple argument: Among the first n
samples of ~„, it is likely that the smallest value
of v„will be ~„-1/n. Equation (8b) may be re-
written ( y(M) &

-min„(n +Mjn), which gives n- EM, ( j(M) &
—4M. Without loss of generality,

y(M) can be written as y(M) = a(M)M' ', where
o. is of order unity. While n depends on M for
any particular resistor, an approximate statisti-
cal analysis of Eq. (8b) indicates that in an en-
semble of samples, n is statistically independent
of M if M»1. This analysis gives the probabil-
ity density function of u to be

A(n) = n exp(-n'/2) .
Thus (y(M) &

= (u& M' '= (~/2)' 'M' '. Combining
(9) with (8a) gives us information about the mean
conductance:

(»G(T) &
= —C ——( y(M) &

C
M

This temperature dependence is the same as in
Mott's variable-range hopping'; the behavior of
the mean of G is incapable of distinguishing the
two models, despite their radically different
physical origins.

We have confirmed numerically the above ap-
proximate analytical results for the present
model. The top panel of Fig. 1 shows ln(y(M)&
vs lnM computed by generating uniform random
numbers for w„ in Eq. (8b), with averaging per-
formed over 2000 different samples. For com-
parison, the statistical prediction of ln(q & above
is plotted as a dotted line on Fig. 1. The agree-
ment between direct numerical simulation and
our approximate analytical theory is clearly ex-
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cellent, and the above analysis of the mean be-
havior of y(M) is confirmed.

The lower panel of Fig. I shows lny vs lnM
for three particular samples among the 2000
studied. These curves clearly display the dis-
tinction between the present model and Mott's
variable-range hopping, for instead of converg-
ing to the mean for large T (large M) as it would
in the Mott theory, lnq displays fluctua. tions
around the mean which are of order of unity and
are independent of JI/l. This directly implies the
very unusual logarithmic behavior of the fluctua-
tions mentioned above:

klutz/ln(y)

- I/InM. We
have confirmed this observation quantitatively
by explicitly computing the rms fluctuations of

y, y—= [ ((y- (y))')]' ', over the same 2000
samples. Using Eq. (9) we expect y=[(4- v)/
2)]'i'M'i'; our numerical simulations confirm
this result quite precisely, as Fig. 2 shows.
Thus we demonstrate that even y ~lnG is not a
typical well-behaved random variable with power-

M

FIG. 1. Top panel: Open circles show (y) vs M on
a logarithmic scale. Average is computed over 2000
samples. Dotted line is the prediction of an approximate
statistical theory for (p) . Bottom panel: q vs M for
three different samples ~& (circles), cy& (squares), and

~3 (triangles). Note the substantial fluctuations about
the mean behavior (y) (dotted line). A study of the full
2000-sample ensemble confirms that these fluctuations
are of order of unity and independent of M. This direct-
ly leads to the logarithmic dependence of the fluctua-
tions on I. (see text).

M

FIG. 2. Upper curve: y(M)M vs M. y is the rms
fluctuation of p. Circles are from a numerical average
over 2000 samples; the dotted line at I(4 —x)/2I~ is
the result of a statistical theory. I ower curve: pp, ~, ,
the rms fluctuations of p, the "local power of T,"vs
M, computed over 2000 samples. The circles approach
the dotted curve at 1/(12), which is the exact result
if p is uniformly distributed.

law decay of fluctuations with I., but rather has
a much slower logarithmic decay. Accordingly,
R(T &0) displays the same sort of large fluctua-
tions as are generally believed to occur in R(T
=0). In fact, by using Eq. (9) we can show that
R(T w0) satisfies an equation similar to (1): (1
+C/M) (lnR) = ln(R). That is, for very low T,
i.e., M - C, R(T) displays the same sort of
fluctuations as R(T= 0). As T (or M) is in-
creased, the fluctuations in 8 gradually decrease
and this equation approaches Eq. (2).

%e wish to demonstrate one explicit way in
which a real experiment should be capable of
distinguishing between the present model and
the multiple-hopping picture of conduction,
despite the fact that the two give identical pre-
dictions for the average behavior of G(T). Con-
sider the quantity

b, in'(T) I y(nT+ 6T) - in' (T)
hlnT ln(T+ hT) —lnT

P, the logarithmic derivative of 1ny computed by
a finite difference, measures the "local power
of T" in the law G(T) ~ exp[-(T, /T) ]. In the
usual variable-range hopping model this deriva-
tive will give the mean value of the exponent,
with very little uncertainty. We predict that as
sT/T -0, the distribution of p(T), rather than
being peaked around —,', is equally likely to be
any value between 0 and I t Thus the rms fluc-
tuations of P, 0P, , = [((P—(P))') ] '/', rather than
being near 0, should approach I/(12)' '. We
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have computed P numerically for 2000 samples
using &T/T =—30%. Even for this rather large
relative temperature difference which is easily
attainable experimentally, the fluctuations in p
are found to be almost precisely 1/(12)' ' (see
Fig. 2), confirming the above analytical result.
A well-resolved experiment should be capable
of measuring p(T) and observing these fluctua-
tions.

These variations in y(T) imply that there are
strong differences between G(T) measured for
different samples. Consequently, the macro-
scopic measurement of G(T) contains informa-
tion about the microscopic details of the resistor
being studied. This is brought out by Fig. 1 in
ln y vs lnM for several samples. Observe that
in the range of M- 10', the slope of the curve
marked n, is larger than the average, that is,
P(M) ~ 1. From Eq. (7) we can see that this im-
plies that there is an extraordinarily low con-
centration of strong eigenstate resonances in the
region n - (10')' ' around e F. Conversely, P(M)
~0, as occurs for M- 10' on sample n„ implies
strong resonances at the energies corresponding
to n - (10')' '. Generally speaking, the measure-
ment of P(M) over a large range of M should
provide rather detailed information about the
zero-temperature eigenstate spectrum.

Finally, it is interesting to reconsider the
case 7~ «L/v, in which the existing multiple-
hopping model may be thought to be correct. In
the language of the present model, the "hops"
are still identified with eigenstate tunneling; the
distanc of the tunneling, instead of being over
the whole length of the sample L, is over the
length v~-. This is somewhat different from
Mott's variable-range hopping, in which the hop

distance depends on L„ the localization length.
Since the carrier will perform a random walk
of hops through the sample, the number of hops

needed to travel the entire sample in the present
model will be N =(L/vT. )'. Since each hop is in-

dependent, the conductance is determined by a
summing over N independent expressions of the
form of Eq. (6) with L replaced by vr .This
implies that the mean results for G(T) given
above for T ».L/v will remain true for T «L/v,
but that all fluctuations will be reduced by the
factor 1/vN = vT /L. So as expected, when in-
elastic scattering is important, almost all of
the zero-temperature fluctuations are suppressed.
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