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Structure of the Triplet Distribution Function near the Critical Point
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Asymptotic Iong-range properties of the triplet distribution function of a fluid near its
critical point are inferred from known properties of the pair distribution function and
the second equation in the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. The in-
verse correlation range ~ and the critical exponent g are related to coefficients in this
asymptotic form. This structural information can be used, in some cases, to test
whether a proposed functional relationship between the distribution functions is consis-
tent with realistic critical behavior.

PACS numbers: 64.60.Fr, 61.20.Gy

The idea that the equilibrium correlations of
pairs of local variables are related has appeared
in a number' ' of places in the literature and
takes several forms, of which I mention thx'ee.
General plausibility arguments have been given, '
supported and extended by specific calculations, ' '
that all pair correlations of local variables should
have a universal Qrnstein-Zernike form at large
distances except on "special" lines in the thermo-
dynamic state space. A rather stronger relation-
ship" is assumed in the "algebra of fluctuating
variables" approach where, at the critical point
of a system, it is supposed that the pair correla-
tions of any two local variables can be written as
linear combinations of some fundamental set of
correlations and that the coefficients in these
linear combinations form a certain algebra. Fin-
ally, a bewildering variety of relations between
various correlations have been assumed by many
authors in order to decouple infinite hierarchies
of equations, involving infinitely many different
correlations, such as arise in the Green's-func-
tion' theories of many-body systems or the
Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY)
hierarchy for the equilibrium state reduced dis-
tribution functions. Perhaps the oldest relation
of this type is the Kirkwood superposition' as-
sumption relating the triplet and the pair distri-
bution functions. This assumption, with the sec-
ond equation of the BBGKY hierarchy, gives rise

to a mell-known equation in the theory of fluids,
whose behavior near its critical point has re-
cently received considerable study. ' These stud-
ies show that the superposition approximation
fails to give the correct asymptotic relation be-
tween the pair and the triplet distribution func-
tions near the critical point, at least for spatial
dimension d & 4, but they do not make clear the
reasons for this failure or what the correct as-
ymptotic relation might be.

In this paper, I give arguments for a certain
asymptotic relationship between the pair and
triplet distribution functions in the critical re-
gion and show that the inverse correlation length
~ and the critical exponent g are related to the
coefficients appearing in this relationship. This
asymptotic form makes clear in what respect the
superposition assumption fails in the critical re-
gion and provides a norm against which other de-
coupling assumptions can be tested.

This argument combines the second equation in
the BBGKY hierarchy with known properties of
the pair distribution function to infer properties
of the triplet distribution function in the critical
region. I will first show that a simple asymptotic
relation between the pair and triplet correlations
will yield a pair distribution function with the cor-
rect critical behavior. Then I will invert the
argument to show in what sense this assumed re-
lationship might be unique.

The. second member of the BBGKY hierarchy is'

V,f,(r„F,) = —f,(F„F,)V,u(F„r,) —Jf,(F„F„r,)V,u(r„r, )d r~,

where f, and f, are the usual pair and triplet re-
duced distribution functions and u = y,~DEBT is the
reduced intermolecular potential. u is assumed
to be translationally and rotationally invariant,
u(F„F,) =u( ~F, —F, ~), and of finite range, u(r) = 0
if r & r,. For r, far from r, (and r, ) the distribu-

f,(r„r,) -p, f,(r„r„F,) -pf2(F„r,),
where p is the number density. It is convenient
to use two dimensionless correlation functions
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which vanish as r, - ~,

h, (r„r,) = [f,(r„r,) —p']/p', (2)

where the rotational invariance of u and of f, have
been used.

Because of the short range of the potential, only
configurations for which lr, —r, l

(r, appear in
(4). Hence h,(r„r, lr, ) can be regarded as the

In terms of these correlations, (1) can be written,
for lr, —F, l

) r„a.s

v, h, (F„r2) = —p Jh,(r„r, lr, )V,u(F„r,)d'r„(4)

correlation of two local variables, the local par-
ticle density p(F, ) and a product density p(r, ')p(r, )
localized in the vicinity of r, and r, . Now the
arguments given in Refs. 1-5 suggest, for r, well
separated from r, and r„ that h, should be pro-
portional to h, (R), where 8 is a vector from r,
to some point near r, and r,. It is necessary to
write this asymptotic proportionality in a way
that explicitly reflects the symmetry of f, and h,
under interchange of the positions of particles 1
and 3. There are several natural ways of doing
this, all of which lead to equivalent results. To
simplify the notation we set F=r, —F„&r,—F„
and s = r, —r,. The assumed asymptotic relation
between h, and h„ for s (r, and r and t large
compared to r„can be written

h~(F„F, lF2) =-', a(s)[1+(s/r)'b+0(s'/r')+ ]h,(r)+~a(s)[1+(t/r)'b+0(t /r4)+ ~ ~ ]h, (t), (5)

where a(s) is an undetermined function of s and b

is a constant. This has the required symmetry
since interchange of r, and r, interchanges r with
Pand replaces s with —s. I will come back to the
questions of the uniqueness of this expression and
the nature of possible higher-order terms. Equa-
tion (5) in (4) gives a linear integro-differential
equation for k, which should be valid for r large
compared to the range r, of the potential u(r)
The slowly varying solutions of this equation can
be investigated by a gradient expansion technique. '
That is, since 6= r —s and s «r, Eq. (5) can be
well approximated by its Taylor expansion about
6= r, for slowly varying h, . There are two small
parameters, s/r and sd/dr, in this expansion
and their relative size need not be specified. The
leading approximation to the integral equation is
given by expanding (5) to terms of order (s/r)
&&(sd/dr)" with m+n (3. The expansion has the
general form

h,(r„F,lr, )

The general form (6) substituted into the radial
component of (4) gives

dh, (r) ~ „1 d"h, (r)
dr r dr"

m, n

where

A "=p f(r" ~ s) -- -a "(s, r" s)s ""d's. (9)
du s) n min 3

If the integral in (9) is done in polar coordinates
with the z axis along r" so that cos0=r" s, then
only the part of a "(s, r" ~ s) odd in r" s contributes
to the coefficient A. ".

When the specific values (7) of the a " are used
in (9), two types of angular integrals appear, cor-
responding to factors (r" s)' and (r" s)' in the
integrands. These angular integrals have the
values

~tf /~ 3~tf /2

dI'(d/2) ' 4 d(d+2) I'(d/2) '

s „d"h, (r)
r (6)

where d is the spatial dimensionality of the Quid.
In addition, two radial integrals, A, and P4, ap-
pear, where

a 0 = a(s), a, o = 0, a,o = ba(s), a, '= (r" s)ba(s),

a,' = —(r" .s)a(s)/2, a, ' = [1 —(r" s)']a(s)/4,

a,' = —a, ' —a,'/2, a,' = (r s)'a(s)/4,

a, ' = - (r" s) [1 —(r" ~ s)'] a(s)/4,

a,' = —(r" s)'a(s)/12.

(7)

The particular form (5) gives, upon expansion,
the following values for the coefficients in (6): —a( s)s""d s."du(s)

ds

The nonzero A„" computed from (7) a.re

A, ' = b C,R„A ' = —C,R /2,

A, ' =-A, '-A, /2,

A| = —(C, —C,)R, /4, Ao = —C~R, /12.

(12)
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These values, pla. ced in (8), yield

dsh, (d —1) d'h, (d —1) dh, 2(d+ 2)b dh, 4(d+ 2)b, dh,
dr r dr r' dr r' dr r ' dr

where a factor of A, ' has been divided out, (ll) and (10) have been used, and

z' = 12(1 —C,g, /2) /C, R,.
Equation (13) can be integrated once, with the boundary condition h(r) -0 as r - ~, to give

d'h, (r) (d -1) dh, (r) 2(d+ 2)b

(13)

(14)

(15)

where g is the positive root of

g(d —2+ g) + 2(d+ 2)b = 0. (16)

This gives the critical index g in terms of the
parameter b in the asymptotic relation (5). The
expected dependence of g on d requires that 5 = 0
for d ) 4 and b &0 for d & 4. Note that if h(r)
satisfies (15) then j (r) =r ~h(r) satisfies the
Ornstein-Zernike (b =0) equation for a shifted
dimensionality d' =a+ 2g.

Thus, the specific asymptotic relation (5) im-
plies an Eq. (15) capable of describing realistic
pair correlations in the critical region. I will
now try to make it plausible that (5) is unique up
to terms m+n (3 in the expansion (6). First it
is plausible to assume that a general relationship
of the form (6) holds between h, and h, for r» r,.
The arguments of Befs. 1-3 imply a relationship
between h, and h, for xr» 1 and (6) is a natural
attempt to generalize that relationship to the re-
gion zr (1 by including higher-order terms in the
small parameters s/r and sd/dr There .may be
other types of terms in (6). The algebra of fluc-
tuating variables approach of Refs. 4 and 5 sug-
gests that (6) might contain terms involving ener-
gy density fluctuations. I will assume that, if
such terms are present, they do not contribute
in low enough order to affect the subsequent argu-
ment. Second, it is reasonable to require the
pair distribution function in the critical region,
and for r» r„ to satisfy an equation of the form
(15) simply as a correct phenomenological de-
scription of the expected properties of h, (r). So
I will assume the general form (6), that h, (r)
satisfies (15), and that (6) is invariant under the

Equation (15) is a generalization of the classical
Ornstein-Zernike (b = 0) equation. The solution
of (15) which vanishes at large r has the proper-
ties

(i) h,(r)ere ""/r" "~', for vr»1,
(ii) h, (r) 0:1/r" "", for zr « I,

interchange of r, and r3.
Equation (8) follows from assuming (6). In or-

der that (15) follow from (8), restrictions have
to be put on the coefficients A ". For example,
a second-order approximation of (8) yields (15)
only if A,', A, ', A,' are not zero and if A, '=0,
~,' = —1, g, '/~, ' =d —1, and terms for which m

+n & 2 are neglected. I will show shortly that
Qp 0 so that the second-order approximation
does not give (15). The other possibility is that
a third-order approximation of (8) will give the
derivative of (15), i.e., an equation of the form
of (13), and (15) then follows by one integration
and with the boundary condition h, (r) -0 at r- ~,
as was the case for the particular form (5). In
order for this to happen, the ten coefficients A ",
m+n (3, must satisfy the six relations

A, '=2, '=2, '=A, '=0, A, '/A, '=d- 1,

A '+A '+A, '/2=0.
(17)

Now separate the a " into parts odd and even in
the variable r" s, a "=0 "+e„". From (9) the
A " depend only on the 0 ", so it would appear
that (17) puts only six restrictions on the ten a "
and none on the ten e ". However, requiring the
form (6) to be invariant under the interchange of
r, and r, leads to expressions for each of the ten
0 " in terms of just six of the e " and their deriv-
atives. The complete calculation of these sym-
metry relations is straightforward but tedious and
some of the resulting expressions are long and so
the details will be published elsewhere. These
symmetry relations show that A,0=0 so that (15)
does not arise from a second-order approxima-
tion of (8). The ten symmetry relations combined
with the conditions (17) are sufficient to provide
a strong argument that the coefficients a " must
have the form given in (7), that is, that (5) is
unique up to order m+n (3 in the expansion (6).

Finally I have a few comments concerning the
failure of the superposition assumption in the
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critical region. The superposition assumption

f,(F„F„r,) = p f,(r„r,)f,(r„r,)f,(F„r,),
implies that

h, (r„F3iF2)= ', [h,(r)+ h, (t)+ h, (r)h, (t)].
p

Comparing this to (5) gives c{s)=f,(s)/p' and h =0.
Since b =0, the exponent g =0. Note, however,
that decoupling assumptions of this kind may also
imply nonlinear terms [here h, (r)h, (t)] in the ex-
pansion (6). Whether or not these terms have to
be kept in the subsequent analysis depends on
their size relative to the nonzero linear terms in
Eqs. (8) and (15). It is known' in the case of the
superposition approximation that the linear the-
ory (15) is not stable against the addition of
quadratic terms in h, (r) for d (4. This apparent-
ly has the effect of preventing the equation from
having a true critical point for d (4. So even if
one were to find a decoupling assumption for
which b c 0 and which in the linear theory gave
realistic results, the presence of nonlinear
terms might change the nature of the correla-
tions. The stability of the critical solutions of
the linear equation (15) against the addition of a
nonlinear term h~{r) depends on the power p, the
dimension d, and the coefficient b. A simple
comparison of the linear and nonlinear terms
suggests that the linear theory is stable if d ) 2
—rj + 2/(P —1); however, a complete analysis
similar to Ref. 9 is not yet available. This re-
lation implies, for example, that a functional re-
lation between f, a.nd f„ for which h w0, and con-
taining only cubic or higher (P ) 8) nonlinearities,

would give rise to an integro-differential equa-
tion which would allow realistic critical behavior
for 4 =3.

I have had the benefit of several discussions on
this general topic with Professor J. J. Kozak and
Dr. E. K. Lee.

'G. L. Jones, Phys. Rev. 171, 243 (1968); G. L.
Jones and V. P. Coletta, Phys. Rev. 177, 428 (1969).

T. Morita, J. Phys. Soc. Jpn. 27, 19 (1969).
3W. J. Camp and M. E. Fisher, Phys. Rev. Lett.

26, 73 (1971); M. E. Fisher and W. J. Camp, Phys.
Rev. Lett. 26, 565 (1971); W. J. Camp and M. E. Fisher,
Phys. Rev. B 6, 946 {1972);W. J. Camp, Phys. Rev. B
7. 3187 (1973).

'

4L. P. Kadanoff, Phys. Rev. Lett. 23, 1430 (1969).
'A. M. Polyakov, Zh. Eksp. Teor. Fiz. 57, 271 (1969)

tSov. Phys. JETP 30, 151 (1970)]; A. Z. Patashinskii
and V. r. Pokrovskii, Eluctuation Theory of Phase
Transitions (Pergamon, New York, 1979).

6See, for example, L. P. Kadanoff and G. Baym,
Quantum Statistical Mechanics (Benjamin, New York,
1962).

~T. L. Hill, Statistical Mechanics (McGraw-Hill,
New York, 1956).

J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).
~G. L. Jones, J. J. Kozak, E. Lee, S. Fishman, and

M. E. Fisher Phys. Rev. Lett. 46, 795 (1981); M. E.
Fisher and S. Fishman, Phys. Rev. Lett. 47, 421 (1981);
G. L. Jones, E. K. Lee, and J. J. Kozak, Phys. Rev.
Lett. 48, 447 (1982); K. A. Green, K. D. Luks, G. L.
Jones, E. K. Lee, and J. J. Kozak, Phys. Rev. A 25,
1060 (1982); M. E. Fisher and S. Fishman, J. Chem.
Phys. 78, 4227 {1983);G. L. Jones, E. K. Lee, and
J. J. Kozak, "Numerical study of the long-ranged
solutions of the Yvon-Born-Green equation, " to be
published.

2093


