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It is found that just below nuclear saturation density more stable forms of dense matter
exist than the near-spherical nuclei or bubbles customarily assumed. Because of the
large effect of the Coulomb lattice energy, eylindrical and planar geometries can occur,
both as nuclei and as bubbles. It is suggested that in order to approximate more com-
plicated kinds of short-range order, the dimensionality should be regarded as a contin-
uous variable ranging from d = 3 (spheres) to d =1 (planes). The dependence of d on den-
sity is illustrated, and its dependence on nuclear models discussed.
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In the process of stellar collapse, star material
is compressed through many orders of magnitude
in density at rather low entropy.!*? Modification
in the physical structure of the matter during part
of this process may affect significantly the ability
of this mechanism to explain the origin of super-
novae.® Within the density range from ~n,/10 to
n, (ng being the nuclear saturation density) it is
believed that dense matter may exist in other
phases besides the customary one of nuclei im-
mersed in a nucleon vapor. The other phase dis-
cussed in some detail has been the bubble phase,
in which the vapor fills spherical holes in dense
nuclear matter.*® The purpose of this Letter is
to enlarge the subject by discussing other con-
figurations of matter. We find that over a wide
density range, the energetically favored phases
have geometries of quite different character,

The use of spherical geometry in discussions
of dense matter derives from the knowledge that
ordinary nuclei are more or less spherical.
While not disputing this fact, we observe that in
the density range we have cited, where the frac-
tion of space filled by dense matter, «, ranges
from 0.1 to 1, the contribution to the Coulomb
energy of the system coming from neighboring
nuclei (the so-called Coulomb lattice energy)
rivals in importance the nuclear Coulomb self-
energy.® Since it is the predominance at low den-
sities of nuclear self-energies (surface and Cou-
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lomb) which produces sphericity (or almost spher-
icity), it is therefore not absurd to explore other
geometries for dense matter.

The lattice contribution to the Coulomb energy
is included in the Wigner-Seitz approach by con-
sidering a unit cell of matter which has zero net
charge, We describe this unit cell in terms of
the compressible-liquid-drop model, which we
believe contains the essential physics. We shall
further simplify that model by assuming that the
density of the vapor phase is negligibly small,
and that the nuclear surface tension o depends
only on the proton fraction x of the dense matter.
We shall ignore all specifically temperature-de-
pendent effects. In the nuclei phase the unit cell,
of radius #,, thus contains a nucleus of radius
7, density »’, and charge density xn’. In the bub-
ble phase there is a void of radius » surrounded
by dense matter out to radius »,. While until now
the geometry has been assumed to be three di-
mensional, so that the boundaries are spheres,
it is possible to consider also two-dimensional
geometry, corresponding to cyclindrical bound-
aries, and one-dimensional geometry, with planes
(where the radius becomes the half width). In the
last-mentioned case the nuclei and bubble phases
are identical.

It is straightforward to obtain the surface and
Coulomb energies in the cyclindrical and planar
geometries, to supplement the d =3 result.!® If
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the dimensionalities are denoted by d=3, 2, and

1 the results for all of these geometries may be
represented by single expressions. Thus the sur-
face energy per unit volume of the matter may be
expressed as

E,=uod/7, (1)

and the Coulomb energy per unit volume as

E ¢ =2an’ 2x?e*ruf 4 (u), (2a)
where
fow)={2/(d = 2)(1 = }au*"**) +u}/(d+2). (2b)

(In the case d =2 the limit yields the correct ex-
pression containing a logarithm.) The filling fac-
tor u, which is directly related to the average
density n and the dense-phase density »’ by u=n/
n’, depends on the radii » and 7, according to «
=(r/r,). The toal energy per unit volume is

Ew=E, +uE(n')+E +E, (3)

where E, is the electron energy and E is the bulk
energy of the dense phase. The latter will for
simplicity be approximated when necessary by

E(n") =n"{E,+(K,/18)(1 - n'/n,)}, (4)

where EO, the binding energy per baryon, K, the
compressibility parameter, and ng, the satura-
tion density, have values appropriate to the pro-
ton fraction &,

Thermodynamics requires that E,,, be station-
ary with respect to variations in »’ and r at a
given density n. The variation with respect to »
produces immediately

E,=2E, (5)

a result familiar for d=3,'° but now seen to be in-
dependent of dimensionality. At the minimum,
the radius of the nucleus is given by

=3 =(4mn'*x%e?/0d)f, (u),

so that the sum of surface and Coulomb energies
per unit volume is for nuclei

Egc=n.t (n'/n ) g,(w), (8)

where ¢, =3[2mx%?0%/n 3 and g, () =u[5d% ,(u)/
18]/3, The variation with respect to n’ produces
the pressure-equilibrium condition which, if we
assume (4) for simplicity, becomes

ﬂ:l_%(-gd'(u)ﬁ%gfﬂ)(gi)"‘é (0

S

for nuclei. [The results for bubbles correspond-
ing to Eqs. (6) and (7) are similar but not identi-

cal to these expressions. |

We determine approximately which of the phases
is most stable at a given density by looking for
the lowest E .. (For reasons given later, it is
not necessary to examine the phase transitions in
more detail.) The nuclear parts of the energies
of the five phases, after subtraction of a common
term, are illustrated in Fig. 1(a). It is seen that
although the 3N phase (three-dimensional nuclei)
is the most stable configuration at low densities,
as we certainly expect, at a quite low density the
2N phase appears, followed by the 1~NB. This
phase, which is nuclei and bubbles at the same
time, then gives way to 2B and to 3B as the den-
sity further increases. There is finally a phase
change to uniform matter at n/n, ~0.85. Thus the
transition from 3N to 3B has been made in a
series of smaller transitions, going through
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FIG. 1. (a) A plot of E; vs n/n, for the five phases
3N, 2N, 1NB, 2B, and 3B, and the uniform matter
phase. Each is shown as a dashed curve except for
the region in which. it is the most stable phase, where
it is shown as a full curve. The dotted curves show
E o for the continuous dimensionality phase. For il-
lustrative purposes a common background function of
n/ng has been subtracted. (b) The continuous dimen-
sionality d vsn/ng (full curve). The dotted lines cor-
respond to the energy crossings of the discrete-d
phases.
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quite different geometries, and covering a con-
siderably larger density range.

It will be interesting to explore the consequenc-
es of these spaghettilike and lasagnalike phases
of dense matter. Their physical properties will
have to reflect the great departure from isotropy
that these phases possess. Neutrino scattering
processes, an important ingredient in the stellar
collapse process, may well exhibit the pronounced
diffractive effects characteristic of these geom-
etries. (Neutrino wave numbers are of order 0.1
to 0.5 fm ™, and the widths of the one-dimensional
slabs are of order 10 fm.)

The planar, cylindrical, and spherical geom-
etries we have considered are clearly oversimpli-
fications of the real situation. We have in mind
more complicated shapes for the regions occupied
by nuclear matter. For example, in considering
the 3N phase one can well imagine the generation,
by the close proximity of neighbors in the lattice,
of quadrupole deformations which turn the spheri-
cal nuclei into prolate spheroids, As the density
increases, these spheroids will touch and fuse
into tubes of dense matter of varying radii. Sim-
ilarly, the tubes may deform, touch, and become
nonuniform plates. We propose to generalize our
procedure to try to accommodate these more gen-
eral shapes. The results contained in Eqgs. (1)
and (2) were not guessed as portmanteau formulas
for the three special cases d=3, 2, and 1, but
were derived for a geometry of general dimen-
sionality d. We believe that it is useful to regard
d as a continuous variable, All of the results we
have quoted are still mathematically valid, and
the expressions vary smoothly with d. They pro-
vide an energy expression which may represent
the continuum of deformed configurations inter-
mediate between the geometrically perfect cases
discussed earlier.

If this procedure is followed, then at a given
density the appropriate “phase” is to be obtained
by minimizing the energy with respect to the di-
mensionality d. We have not found a simple way
to express the minimum in closed form, but the
numerical minimization is trivial, and the re-
sults are shown in Fig. 1(b). The dimensionality
varies continuously from 3N throughd=1 and
then on to 3B. The surface-plus-Coulomb energy
has a symmetry between « for nuclei and g=1 -«
for bubbles, so that in the approximation that the
dense matter is incompressible (rz’=n,) the curve
in Fig. 1(b) will become symmetrical about n/n
=%. [The subtraction used to exhibit the small
energy differences of Fig. 1(a) does not possess
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this symmetry. |

There remains a first-order phase transition
between 3B and the uniform-matter phase, for
reasons given elsewhere.® But over most of the
density range the transitions are smooth, reflect-
ing what we believe to be the actual physical pro-
gression of configuration changes. The incorpor-
ation of such effects into the equation of state
used in stellar-collapse calculations would pro-
duce a natural smoothing of the present phase
changes from three-dimensional nuclei through
three-dimensional bubbles, thereby making less
violent the resulting “ripple.”

A correction to the Wigner-Seitz approximation
comes from the calculation of the long-range part
of the Coulomb energy for a lattice, ratheyr than
for a cell of idealized geometry. The correction
is small, and slightly enhances the energy dif-
ferences in favor of the phases we propose. For
d =3 the body-centered cubic lattice, the most
stable, has a lattice Coulomb energy 0.45% high-
er than that of the Wigner-Seitz cell.'® For d=1
there is no correction. (We are working on the
d =2 correction, but it is not expected to be out
of line with the d =3 and 1 results.) Our calcula-
tion also neglected screening of the Coulomb in-
teraction by the electrons. We calculate that the
corrections due to screening are, at #=0.1,
—3.3% of the Coulomb energy for d =3N and
—17.3% for d=1. They are thus not negligible,
and they favor the lower values of d.

Without going into details we observe that the
results presented are model dependent to the ex-
tent that we have used a particular nuclear Hamil-
tonian.’* The dependence of the physics on 9¢,/
K, i.e., on the ratio of surface-plus-Coulomb
energy to the compressibility parameter,® implies
that with a softer interaction, as used, e.g., in
Ref. 5, the transition at the upper end of the den-
sity range could well be from uniform matter to
bubbles with d <3, i.e., to very deformed bubbles,
An effect going in the other direction, i.e., making
3B more stable, is the inclusion of surface curva-
ture.'? Curvature will also push the onset of the
initial departure of d from 3N to lower densities.

Some temperature-dependent corrections which
are not known exactly even for d =3 (Coulomb and
translation energies) presumably will be modified
for d <3, and need study. In the 3N and 3B ge-
ometries the 7'=0 behavior is found to be insensi-
tive to T up to temperatures which are a reason-
able fraction of the critical temperature (~18
MeV at ¥=0,3). We see no reason why the new
geometries should not show similar temperature
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properties. After all, the cooking of spaghetti,
while it spoils the perfect straightness of the
strands, does not destroy the characteristic short-
range order.

It is clear that the numerically more elaborate
Hartree-Fock® and Thomas-Fermi® calculations
can be done for our generalized geometry. Al-
though it is not clear what new significance they
will have for d not an integer, they will be ex-
tremely useful for d <3 as confirmation of our
liquid-drop model predictions. The possibility
of d <3 phases, or of smaller-scale effects like
them, occurring during the fragmentation part
of heavy-ion collisions also should not be over-
looked.

In neutron-star matter the presence of an ap-
preciable vapor of dripped neutrons (whose den-
sity we could neglect at low temperatures for
Y, =0.3) shifts the lower end of the range of ex-
pected transition densities to ~0.2(n'+ 7,5, ),
while the upper end remains somewhat below 7.
The span of densities is thus somewhat reduced.
Also there may still exist regular phases with
more complex nuclear/bubble arrangements than
the 3N, etc., discussed initially. Transitions in-
volving them would presumably be of first order,
and involve density discontinuities, although on a
reduced scale,

Consideration of some consequences of the low-
er dimensionality on the physical properties of
the transition from uniform nuclear matter to
quark matter at higher densities is in progress.
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