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An improved Coulomb potential is presented for use in the relativistic Schrodinger
equation. This potential takes into account contributions of all two-photon exchange dia-
grams and gives the lowest-order relativistic corrections to the static Coulomb potential
for arbitrary masses of the two particles. The cases spin 0-spin 0, spin 0-spin 2, and
spin ~-spin 2 are considered. When the mass of one of the particles goes to infinity,
then the well-known corrections to the binding energy and to the phase shifts as obtained
with either the Klein-Gordon or the Dirac equation are reproduced.
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The electromagnetic interaction between two
charged point particles is for many purposes not
accurately enough described by the I/z Coulomb
potential inserted in the nonrelativistic Schroding-
er equation. Often one needs relativistic correc-
tions. Some of such corrections can be obtained
when one uses the Klein-Gordon (KG) or the Di-
rac equation. These equations suffer from the
disadvantage that they are essentially one-pa, rti-
cle equations and not very well suited for a, two-
body problem. For example, recoil corrections
are not easily obtained. Another way to improve
the nonrelativistic description is to go to the
Breit equation. ' When used in the coordinate rep-
resentation this equation suffers from the diffi-
culty that it is really a fourth-order differential
equation because of the correction term -p~/~'
to the kinetic energy.

In this Letter we present an improved Coulomb
potential which gives correctly the lowest-order
relativistic and recoil corrections to the scatter-
ing amplitude, phase shifts, and bound-state en-
ergies, when this potential is inserted in the "rel-
ativistic" Schrodinger equation. We do this for

the following cases: spin 0-spin 0, spin —,'-spin
0, and spin —,'-spin 2. This improved potential
takes into account contributions of the pla, nar-
and crossed-box two-photon-exchange diagrams,
and in the case of spin 0 also of the seagull graphs.
This relativistic Schrodinger equation is the co-
ordinate-space version of the Blankenbecler-
Sugar-Logunov- Tavkhelidze (BSLT) equation. ' '
The (nonrelativistic as well as relativistic) Schro-
dinger equation in the coordinate representation
1s

where m =m, ~,/(~, +~,) for a two-body system
with masses m, and m, . The difference between
the nonrelativistic and the relativistic Schroding-
er equation is the relation between the center of
ma, ss (c.m. ) relative momentum p and the c.m.
energy E. In the nonrelativistic case E =p'/2~
and relativistically E = (p +~,')'~ + (p'+~, ')'~'

This improved Coulomb potential has
been constructed'' in order to give an accurate
description of the low-energy proton-proton scat-
tering experiments. In that case the vacuum po-
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larization potential' has to be added and one must
also include form factors to describe the extend-
ed electric and magnetic charge distributions of
the protons. ' However, we can think of several
other cases where this potential could be very
useful.

The derivation' of this improved Coulomb po-
tential will be published elsewhere, but let us in-
dicate how it was obtained. We follow the well-
known road&' from the Bethe-Salpeter equation"
for the relativistic scattering amplitude via the
BSLT equation to a potential V for the relativistic
Schrodinger equation. This potential is construct-
ed in such a way that it reproduces the relativis-
tic scattering amplitude (its pole positions are
the bound-state energies) as well as possible.
When one wants to obtain in a consistent way rel-
ativistic corrections to the Coulomb potential one
must calculate in addition to the one-photon-ex-
change diagram also the two-photon-exchange
diagrams. The pseudopotential W for the BSLT
equation is to order e given by"

W =M, +M vp+ (Mx+M v+Mg -M,gM, ).

The contributions to this potential TV come from
one-photon exchange M, (where we can include
the vacuum polarization Mvp) and from two-pho-
ton exchange like planar-box M~, crossed-box
Mx, and in the case of spin 0 also the seagull
graphs M &. When one computes these different
contributions then one notices first of all a large
cancellation between Mz and the twice-iterated
one-photon exchange M,gm„and also a sizable
cancellation" between Mx and the rest of M~.
Next we use the freedom" still existing in the
choice of the off-shell behavior of the BSLT prop-
agator g. We choose this propagator g in such a
way that we obtain in the low-energy region an-
other cancellation between the sum of all two-pho-
ton-exchange contributions I„+Mx+M ~ and the
twice-iterated one-photon exchange M, graf, . With
this specific choice of g the total two-photon-ex-
change contribution to W [the term in parentheses
in Eq. (1)] vanishes in the order of accuracy of
our calculation. Then our pseudopotential R'

+M yp does not contain two-photon-exchange con-
tributions anymore. However, this statement is
not true for our improved Coulomb potential V
for the relativistic Schrodinger equation. The off-
shell behavior of this potential [the term propor-
tional to b in Eq. (3)] is such that by iteration it
will give the main contribution of the two-photon-
exchange diagrams.

The off-shell matrix elements of the improved

Coulomb potential (neglecting the vacuum polari-
zation) for two spin-0 particles with point charg-
es Z, e and Z, e are

(p, iv~p, . ) =(Z,Z, e'/u')(a+X, /C '),

with

X, = b (q' + —0' —p') + c,k'+ 4d (q ~ k/k )'.
We have introduced the vectors

q = (pz +p, )/2, k =
pz

- p, , n = p,. x pz
= q x k.

The coefficients a to d are

(2)

2X, =g, P +e

where

c, = ——,'(1+2~, ) (~/gpss, )',

e, = —
2( 1+ 2v, ) (yn/m, )' —4 (1+&,) m/M.

(6)

Here e, gives the spin-orbit interaction and c,
the corresponding Darwin term of particle 1.

When also particle 2 has spin —,
' instead of spin

0, then we must add to X moreover the terms
2

X2 = @2k +e2i s2 ~ n,

X„=f[(c, k)(c, k) —k'c, .v,],
with f = (1+v, )(1+v, ) ~/M and c, and e, given by
(6). Here X, gives the spin-orbit interaction and
the Darwin term of particle 2 and X» the tensor
and spin-spin interaction between the two spin- —,

particles.
The improved Coulomb potential in the coordi-

nate representation is

V = V, +V, = z,zn '/r + (Z, Z,a /4m ')p,

a = (E,&, +p')/m (E, +&,) = 1+p'(1 —m/M)/2~',

b= 1 —X, co= —m/M, d=X, (4)

where M=~, +m, and E, = (gyes, '+p')'i'. Equations
(2) and (3) indicate the approximations made. We
include in V all corrections to the static Coulomb
potential Vc which are of the order [(momentum)'/
m']Vc. The improved Coulomb potential depends
on the gauge in which we perform the calculations
and on the definition of the relative four-momen-
tum. ' This can be expressed by only one arbi-
trary parameter g in the potential. Our lowest-
order corrections to measurable quantities (like
binding energies and cross sections) are indepen
dent of g.

When particle 1 has spin & instead of spin 0 and a
a magnetic moment p, = (1+~,)(Ze/m, ) s„with
s, = —,'o, the spin, then we must add to X, of (3)
the term
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with'4

(8)

Z(n, I, j) = —(m/2)(Zn/n)'[I+ (Z~/n)'A],

w'ith

y = —bp'/r ——,'b[6 (1/r) + (1/r)b]+ (c+d —
~ fo;o,)4@53(r)+ (2dI.'+e, L ~ s, +e~L s~ f—S»)/r'.

Here ot =e'/(4n), a' = aa, c = c,+ c, + c„h is the Laplacian, L the orbital angular momentum, and S»
= (o, .r) (cr, r)/r' —c, ~ o,/3.

The bound-state energies 8 (n, l, j) for a hydrogenlike atom (Z, Z, = -Z) can easily be calculated by
use of the potential as given in (7) and (8). In order to demonstrate the accuracy of this improved po-
tential we will give these bound-state energies in an expansion in n. When particle 1 has either spin 0
or spin —,

' and particle 2 has spin 0, then up to n4 we get

A= ——+ + (b+d+-,'e, ) —2. e„+(c,+c,—&e,)2nb(l, 0). (10)

We observe using (4) and (6) that A is independent of y, i.e. , "gauge" independent. For two spin-0 par-
ticles (10) becomes

A = 2n/(2l + 1) —
& +m/4M - 5(l, 0)2nm/M.

The first two terms represent the standard KG result" and the last two terms are corrections to this.
For a system with spin & and spin 0 we get

This expression is valid for all values of ypg, and

nz, . However, we have grouped the terms such
that for the case m, «m, (like the H atom) the
result can easily be compared with well-known
results. The first two terms give the standard
result as obtained with the Dirac equation. The
third term is a mell-known recoil correction. "
The last two terms represent another recoil cor-
rection and the contribution to the Lamb shift due
to the anomalous magnetic moment.

Not included in the binding energy is the contri-
bution due to the vacuum polarization potential
which is of the order a (Za )4m'/[m, (zotM+m, )']",
where ~, is the electron mass. However, this
potential can easily be included. In that case the
most important term not obtained with this poten-
tial is due to the mass renormalization. Its con-
tribution to the binding energy is of the order
n (Za)'In(Za).

The phase shifts due to this improved Coulomb
potential can easily be calculated. To illustrate
once more the accuracy of this improved poten-
tial we calculate in distorted-wave Born approxi-

!

mation explicitly the lowest-order corrections to

the nonrelativistic Coulomb phase shift 5, '
(q)

=argI'(l+ 1+i'). Here q =Z, z,o.m/p =Z, z,n/v
with v the nonrelativistic relative velocity in the
c.m. system. The Schrodinger equation with the
potential V, =Z, Z,n'/r can easily be solved. It
leads to a phase shift o, '"(q'), where we have de-
fined the modified Coulomb parameter"

7/
' =Z g Z g Qf m /p = Z ~ Z gA /v gb ~

The total phase shift due to our improved Cou-
lomb potential V we write as o, =o,~' (r)')+p, . The
correction p, can easily be calculated in distort-
ed-wave Born approximation from the potential
V, = V —V,. Then

tanp, = —(2m/p) f dr &, (g', pr)V&, (ri', pr),

where F, (g', pr) is the regular Coulomb wave
function.

In the case of the scattering of two spin-0 parti-
cles we find

Zotp Za Zn' z so, '"(rI') Zap
(12)
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The first term in (12) is due to the (q k/k)' part
of the potential. This gauge-dependent part of the
phase shift is independent of l and is thus unob-
servable. The second term in (12) is in the limit
~,-~ exactly equal to the term that would be ob-
tained when one solves the KG equation to the
same order of accuracy. " The last term is an
extra correction for s waves only.

It is also easy to calculate p, in the case of
spin--,'-spin-0 scattering. In order to compare
with the exact solution of the Dirac equation we
take K y

= 0 and the limit ~,-~, then we get

(l
.
)

ZQp (Zof) s' o( g
—l

(13)
2m

' 2j+ I 2 Bl

We see here again a gauge-dependent but unob-
servable part and a second part that agrees with
the exact solution" of the Dirac equation expand-
ed to the same order of accuracy. When Kyg 0
and/or yg, e ~ we find some corrections to (13).

The difference between the nonrelativistic Cou-
lomb phase shift o, '

(q) and the modified Cou-
lomb phase a, is twofold. Firstly we have the re-
placement of g by q' in o,"~ and secondly we have
the extra phase p, .

What are some of the advantages of our poten-
tial7 (i) The potential is for use in the very fa-
miliar Schrodinger equation. (ii) Relativistic as
well as recoil corrections are included. Because
the potential has a clear field-theoretic deriva-
tion one knows explicitly the approximations
made. (iii) Extensions to higher spin particles
ca,n easily be postulated: Add the Darwin terms,
the electric and magnetic multipole interactions,
and the terms due to the Thomas precession, as
done in Eqs. (5) and (6) for the magnetic dipole.
(iv) When one or both particles have extended
charge distributions then the form factors can be
included exactly. ' By exactly we mean that the
same type of cancellations as discussed here for
the two-photon-exchange contributions to the po-
tential V will happen also in that case. (v) Strong-
interaction potentials can be added easily. Cor-
rections to additivity can be calculated in prin-
ciple. (vi) An improved Coulomb and vacuum po-
larization modified effective-range expansion ha, s
been derived. '
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