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Model Theory for Scanning Tunneling Microscopy: Application to Au(110) (1x2)
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A theory is presented for the scanning vacuum-tunneling microscopy experiments per-
formed by Binning et al. The tunnel current is obtained for different geometries and tip
shapes. Lateral resolutions are 4—8 & for distances from the tip to the sample ~ 3.5
4.5 f&, effective tip radii ~ 3—10 A, 1-nA currents, and applied voltage ~0.01 eV. The
Au(110)(1x 2) surface is analyzed and the experimental results discussed.

PACS numbers: 68.20.+t, 73.40.Gk

Recently Binning, Rohrer, Gerber, and Weibel®
(BRGW) have been able to control and perform
vacuum tunneling of electrons from a W tip to a
sample surface. By moving the tip parallel to the
surface, they have mapped the Si(111)(7 X7) as
well as the Au(110) (1 X2) and (1 X3) reconstructed
surfaces.! Without doubt, this new technique
(scanning tunneling microscopy) opens great ex-
pectations in surface physics. The experiments
are performed by maintaining constant current,
~1 nA, and applying a constant voltage, V,~0.01
eV, between the tip and the sample. When the tip
moves along the surface, it shifts upwards and
downwards, giving a description of the surface
geometry. In order to interpret all this informa-
tion, a theory is needed from which to obtain, for
instance, the real corrugation charge from the
tip motion. This theory must tell us at the same
time what are the lateral resolution of a given tip
and the current 7 for a given distance d from the
tip to the surface. In this paper we present a

realistic model which gives an answer to those
questions and which is applied to Au(110)(1 x2),

Our model is graphically described in Fig. 1.
The left-hand side is a scheme for the one-elec-
tron potential profile between the tip and the
sample. There are three important contributions
to that potential: (i) First, we have a narrow re-
gion of width around 1 A near the two metals,?
where the potential changes quickly from the bulk
to the vacuum, (ii) On the other hand, an elec-
trostatic potential between the two metals must
be included to equalize both Fermi levels; for W
and Au, the voltage drop is 0.7 eV, i.e., the dif-
ference in work functions between the tip and the
sample.® (iii) Finally, there must appear cor-
rections introduced by the image potential. Al-
though this effect is important, the image po-
tential is very flat in the region between both
metals, presenting important variations only
near both surfaces.

According to this discussion, in our model we
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FIG. 1. (a) Energetic scheme of the tip-sample system. (b) Lateral profile of the tip repeated periodically with

a period L large enough to decouple the tips.
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simplify the interface potential and substitute the
abrupt potential shown in Fig, 1(a). We have cho-
sen the parameters of this model in order to
simulate the tunneling associated with the s wave
functions of both metals,* which are the ones giv-
ing the important contribution to the tip current.
The following values of the Fermi energies of
both media have been used: E y(Au) ~5.5 eV and
E (W) ~8 eV (Ref. 5) (see Fig. 1). In Fig. 1(b),
we also show the scheme used in real space for
the shape and potential of both surfaces.

Having defined the model, our problem is to
solve for the current density, the transmissivity,
and the reflectivity of one electron approaching
the tip’s surface from + « and tunneling to the
sample. The total intensity is obtained from all
the electrons contained in a spherical shell around
the tip’s Fermi surface with an energy width
equal to V,, which in the experiments' is taken
as around 0.01 eV,

This problem has been solved by periodically
repeating the tips across the surface [Fig. 1(b)],
at distances L large enough to leave them decoup-
led. We have used the same numerical techniques
as developed in atom® and light surface scatter-
ing.”® We have analyzed different systems with
a corrugated surface (either W or Au) having
spherical, cosinelike, parabolic, and saw-tooth
profiles, placed at a distance d from a plane sur-
face (either Au or W). By using 50 reciprocal-
lattice vectors, we have obtained highly con-
vergent results. In our calculations, we have ob-
tained the total intensity I going from the tip to
the sample for a given V, and d, and energy ¢
(this is the Fermi energy as measured from the
vacuum level, Fig. 1), as well as the maximum
current density, j, at the sample surface. From
these two quantities 7/ and j,, we can define an
effective length, L., related to the sample sur-
face area (lateral resolution) scanned by the tip:

M(Less /22 =1/j o (1)

The values of the current density, j, as a func-
tion of the distance from the center of the tip are
presented in Fig. 2 for R.¢; =10 A [cf. Eq. (3) be-
low]and d=3.5 A. Notice the rainbow effect as
the incident angle, ¢,, of the electrons increases.
The intensity is the summation of the integrals
of the continuous curves given in Fig. 2. It should
be commented that the typical transmissivities
for d=~3.5-5 A are ~102-10"3,

A very interesting result connected with our
intensity calculations is that 7 can be written in
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FIG. 2. Current density j for a spherical profile, as
a function of the distance to the center of the tip. It
has cylindrical symmetry. Dashed lines are the cur-
rents of one electron at a given incident angle ;. The
continuous curves are the dashed lines multiplied by
the averaged solid angle of the Fermi sphere. The
radius of the tip is 10 A, L =20 &, ¢=4.5 eV, and
d=3.5A.

the following way:

1/2
=e—lz-GN(EF)VOexp[—Z.14<ZZL;p> d], (2)

12m

where N(E;) is the density of states at the Fermi
level for the tip, and G is a constant depending
only on the geometry of the sample and the tip,
and is related to the transmissivity from W to
Au. Furthermore, we have found that G is prac-
tically only a function of an effective curvature,
R.¢s, defined as follows:

1 1 1 1 1
R’ <731—t " _RF)(ET " R_zs—> ’ @
where R, ,' and R, ,° are the two radii of curva-
ture associated with the tip and the sample, re-
spectively. Figure 3(a) shows the dependence of
G on R.¢5.
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FIG. 3. (a) Values of G vs the effective radius of
curvature of the tip-sample system, R¢¢ [ formula (3)].
(b) L ¢t for the same values of Rqrs. The system W-Au
is indicated by the circles with 4—4.5 A resolution.
(c) Values of the experimentally observed corrugation
H,as a function of the sampled corrugation %, The
curves are given for (¢ (eV); R (R)). For Au(110)(1x2),
Ho~0.45 A, ¢p=3 eV, R!~3.5 &, hy~2.1 &, andd~4 A.
This is indicated by the cross.

Returning to Eq. (2), it is of interest to com-
ment that the exponent that we have found,
exp[— 2.14(2m¢/k?)?d], is quite close to the
one that appears for plane surfaces,® exp[- 2
x(2m@/m2)/?d], for the current density, We
argue that the small difference that we have found
in the exponent, 2.14 compared to 2, is due to
the curvature of the two surfaces; note that this
curvature increases the effective distance be-
tween the two metals. On the other hand, note
that our results have been found for K. <11 A.

In Fig. 3(b) we give L., as defined by Eq. (1),
as a function of ¢ and R ¢ for /=1 nA and V,
=0.01 eV (the dependence on d is small and has
not been included in this figure). The values
found for L ¢ are between 4 and 8 A. Then, we
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have analyzed the corrugation #, observed' by the
tip in its motion (~0.45 A) as a function of the
cosinelike roughness, 4,cos[(2n/a)x], assumed
to appear on the Au(110)(1 xX2) surface,"* a being
the unit-cell length., The maximum and minimum
of the tip position have been analyzed by using
Eq. (2), for V,=0.01 eV, I=1nA, and NE;)=2
x10%2 ¢cm®/eV; from this equation we obtain d,
~3.9 A, and determine the tip position. Note that
in the minimum position, the tip “touches” the
sample at two points, in such a way that through
each one we have an intensity of ~0.5 nA.

In Fig. 3(c) we give the dependence of #, on A,
for different values of ¢ (2, 3, and 4 eV) and the
tip radius, R’. Our results show how #, tends
to saturate for high %, values, a quite obvious re-
sult, Figure 3(c) also shows that in order to get
very high resolution we need very small tip radii.
However, for R between 3 and 5 f&, we have quite
a reasonable resolution. Referring to the BRGW
results for Au, it is of interest to comment on
the value of H,, ~0.45 A, as found' for the (1Xx2)
surface. The same surface has been analyzed by
atom scattering,* and a roughness of #,=1.4 A
was found, when the turning point of the incident
atoms is ~3.5 A from the surface; this is a low
limit to the roughness of the surface potential,
as shown in Fig, 1, Taking into account this re-
sult and Fig. 3(c), we conclude that the effective
radius of the tip used by BRGW for Au must be
3.5+0.5 A and the distance from the maximum
dmay ~3.9 A.

We should comment that we expect ¢ to be
around ~3 eV, a value which is obtained by as-
suming that the image potential lowers the bar-
rier by ~1.7 eV. At this point it is worth com-
menting that Eq. (2) can be used to calibrate the
effective value of ¢ in the experiments. To this
end, the intensity 7/ should be drawn as a function
of d in a semilogarithmic scale. Although in
principle ¢ is a function of d (as a result of image
potential effects), that plot must show essentially
a linear relationship between 7 and d for small
changes of d. Moreover, for large variations of
d, Eq. (2) could be used to analyze the image po-
tential.

We believe that the results presented here have
general characteristics, and that the effects as-
sociated with nonabrupt potentials can be intro-
duced by an effective value of ¢.

We thank A. Baratoff for discussions and
H. Rohrer and G. Binnig for comments on their
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