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A lattice rescaling method is applied to the equations of motion of the dilute Heisenberg
chain and leads via a probabilistic integral equation to an iterative map for the charac-
teristic frequency P and concentration p, Dilution induces a crossover in the p scaling
from "chaotic" (ergodic and mixing) behavior, corresponding to the sampling of the pure
band, to periodic orbits corresponding to isolated cluster response. A dynamic scaling
form is obtained for the critical dynamics by fixed-point analysis.
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Much recent progress has been made in under-
standing static critical properties of disordered
systems by the use of lattice rescaling methods. '
Up to now, however, there has been no satisfac-
tory development of such methods for the dynamic
properties, partly because of some construction-
al and interpretive difficulties in lattice rescaling
methods for the dynamics of the pure case' and

partly because of insufficient care with the disor-
der, These difficulties are overcome in this I et-
ter. I will treat the particular case of the diluted
Heisenberg chain at absolute zero.

I give here the first lattice-rescaling treatment
transforming the distribution function of the dy-

namic variable. I extract an equation for the
scaling of the characteristic frequency which is
able to deal with the critical dynamics and to
treat both band (extended) and localized (cluster)
response. The scaling equation is an iterative
map' ' with control variable ranging, as the con-
centration variable sca1es, from values yielding
chaotic" behavior associated with band response

to values yielding a hierarchy of bifurcated stable
orbits corresponding to isolated cluster dynamics.

If one is not interested in the full crossover,
the low-frequency (critical) dynamics can be ob-
tained simply by linearizing about the doubly un-
stable zero-frequency percolation fixed point of
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the recursion map, in the usual procedure of re-
normalization-group theory. ' This yields a dy-
namic scaling form, ' involving the percolation
correlation length (t, with dynamic exponent z =2.

I start from the equation of motion' for the
transverse spin components in a zero-tempera-
ture disordered Heisenberg chain, having ex-
change ~, on the &th bond. The equation for the

2nth spin involves the spins at neighboring sites
(2n+ 1). These latter spins can be eliminated by
using their equations of motion, which involve
spine at sites 2n, 2(n + 1). This elimihation of
every other site of the original chain ( decima-
tion"') leads exactly to an equation of identical
form to the initial one, but with rescaled value
pl' of the original random "frequency" variable
P, =—~/J, for the 3th bond:

l l +2l + t 2l - 1 ~2l -1~2l +~2l 3P-2l -1 ~2l ~2l - 1~2l )/Q2l 3-I 2l 2-~2l 3~ 2-l 2)-

~(t 2l -3 9 ~2l -2 0~2l -1J 2l )'

The probability distribution QP, ) for the independent random variables 0, thus transforms" according
to the recursive integral equation Q- Q', where

Q'(8, ') = JdP, . .d.P Q(P, ). . .Q(P )6(P, ' -g(P„P,P,P )). (2)

/ p2

In the dilute case, Q (P, ) is initiall. y two 6 functions, of respective weights p and 1-P at +/J and ~,
where p is the bond concentration. The scaled distribution Q'P, ') is (after a single scaling) a 6 func-
tion at ~ (whose weight is denoted by 1-P', so that P' is the scaled value of P) and several other 6

functions at finite values of P, ', whose overall weight is P' and whose center of gravity is denoted by
p'. p' can be regarded as the scaled value of the original characteristic frequency P =-&/A The result-
ing scalings of concentration variable p and characteristic frequency p —= ill/4 are

&' =(1 -0)'(3& -&') +f (1-P)&(6 —9&+ 2P')/(I 0) + f1-'(4P 0')- (4)

Equation (3) is exact, but (4) is approximate
since it is based on the same sort of binary ap-
proximation and neglect of induced correlations
often used to reduce the scaling of the distribution
of the random variable in static disordered criti-
cal problems. "" Equations (3) and (4) give the
complete static and dynamic renormalization-
group transformation for the system.

Equation (3) is the usual percolation scaling"
and has two fixed points, P* =1,0, corresponding
to pure and empty chains, respectively. At these
two values of the concentration, (4) reduces to

with lY (1) = 4, lY (0) = 3. Equation (5) has the form
of the common one-dimensional (Myrberg) itera-
tive map. ' ' It has very rich iterative properties
of which the simplest (for small control variable
&) are monotonic or periodic flows into a stable
fixed point. As & is increased through 3 a bi-
furcation into a stable orbit of period 2 takes
place and then further period-doubling bifurca-
tions occur until a limit point of bifurcations is
reached at & —3.57, at which the system is ergod-
ic but not mixing. For n between 3.57 and 4 ergod-
ic mixing behavior occurs in which the iterated
variable samples a series of bands in frequency
space. Then for 0.'=4 the ergodic mixing behavior

!samples a single complete band. This last situa-
tion, occurring in the present system at the pure
limit P =1, can easily be seen to be the simple
band behavior of the pure system, since P =2(1
—cosk) (with k —k' =2k under length scaling)
solves the frequency recursion equation for this
case and gives the full band sampling of the itera-
tion, with the pure density of states p(P) ~ [P (16
—P')"2] '. The opposite (low-concentration) lim-
it of our development gives 0.'=3, which is the
marginally stable situation just about to bifurcate
for the first time. It corresponds to the response
due to single bonds, which have overwhelming
weight as P -0. This can be seen from the densi-
ty of states, which can be calculated by iterating
many times, or by analytic methods to be de-
scribed elsewhere. This has two dominant con-
tributions, one at 0 =2 and one at P =0: These
peaks are at the two energies for a pair of spins
joined by a bond, and are indicative of nonmixing
behavior.

Any initial (physical) value of the concentration
not equal to 1 or 0 scales through a series of
iterated values towards the P =0 fixed point. This
takes lY (p) from the ergodic mixing regime cor-
responding to band behavior into the orbit cascade
regime (& below 3.57) which corresponds to the
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response from isolated finite clusters of smaller
and smaller size. Thus any initial P & 1 picks up
appropriately weighted dynamic response from
finite clusters of all sizes and, in general, dilu-
tion induces a crossover from extended to lo-
calized behavior. The full details of this cross-
over will be given elsewhere.

The low-frequency critical dynamics is deter-
mined only by the scaling in the neighborhood of
the zero-frequency percolation fixed point (6,p)
= (0, 1) [since the percolation threshold at which
the percolation correlation length $~ diverges is
p, =1 (Refs. 12 and 13)]. Here linearized forms
of the recursion equations (3) and (4) are ade-
quate, and the ful. l discussion of the points of the
preceding paragraphs is not required. From the
eigenvalues of the linearized recurrence equa-
tions we obtain scaling fields 1 —P, l3"' which
scale like the dilatation factor. The other (obvi-
ous) scaling fields are the wave vector k and

1/(~. Usual length-scaling homogeneity then im-
plies the following dynamic scaling form' for the
characteristic frequency:

P =k'E(kt'~) P,k, 1/&~- 0), (6)

where z =2 and (~~ (1-P) '. Standard asymptotic
arguments show that +(x) goes to a constant (the
spin-wave stiffness) for x large and like 1/x' for
x small. These again correspond to extended and
localized results, but are special cases of the
general description since we are here only con-
cerned with k, 1/$~-0. A discussion of the criti-
cal dynamics and of asymptotic forms for this
case can be obtained by other methods" based on
direct cluster statistics.

The main features discussed here will persist
in higher dimensionality. " However, infinite
cluster response now occurs for a range (P, & P
&1) of values of p, and so the crossover is still
more complicated" and involves a percolative
dynamics (at P,) different from the pure dynam-
ics, and crossover from this to both pure and fi-
nite cluster dynamics. Also, in this case, the
function g occurring in (2) is expected to exhibit,
in the appropriate limit, a relationship to the
dilute resistor network scaling function" because
of a result of Last~7 and Kirkpatrick. ' This rela-
tionship does not occur in the one-dimensional
case because of the absence of the finite cluster
for P &1.

Finally, the close connection between the initial
(configurationally dependent) equation of motion
used here and that occurring in disordered tight-
binding models and, in particular, quantum per-

colation" and the Anderson modeP' suggest that
the present method should have interesting con-
sequences and useful applications in those prob-
lems.
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