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Diffusion in a Periodic Lorentz Gas
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Self-diffusion in a Lorentz gas on a triangular lattice is studied both analytically and
numerically. A simple estimate for the diffusion coefficient, based on the idea of a
random walk between traps, is found to be in good agreement with the numerical results.
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This Letter presents a quantitative study of the
self-diffusion process in a simple dynamical
system. The system in question is a Lorentz
gas consisting of a single point particle moving
in a triangular array of immobile disk scatterers.
The point particle moves with constant velocity
between elastic collisions with the disks. We
take the speed of the particle and the radius of
the disks to be 1 while the lattice spacing is 2
+ W. The geometry is shown in Fig. 1. The
separation parameter, W, completely deter-
mines the behavior of the system. At close pack-
ing, when 8'=0, the moving particle is trapped
in a single triangular region formed between
three disks. When 0 & W &4/v 3 —2=0.3094 the
particle can wander over the entire plane but
can never move further than the distance 2v 3
before suffering a collision. For W&4/&3- 2

the particle sees an infinite horizon and may
move arbitrarily far between collisions. In this
paper we will study the high-density regime, de-
fined by 0 & W & 4/v 3 —2.

Bunimovich and Sinai" have obtained rigorous
results for the high-density regime of this regu-
lar Lorentz model which show that it has strong
ergodic properties. One of their results' is that
the autocorrelation function of the velocity of the
moving particle decays exponentially with the
number of collisions. Since the time between
collisions is bounded by 2&~3 it follows that the
velocity correlation function (VCF) as a function

of time is integrable and that the self-diffusion
coefficient, B, exists.

In this Letter we are primarily interested in
finding the dependence of D on the lattice spacing,
or, equivalently, on W. First we will give a
simple analytical estimate of D(W) and then
present the results of a numerical simulation of
the model. The simple estimate is in surprising
agreement with the numerical results over the
entire high-density regime.

The simple analytical estimate is based on the
idea that, at high densities, the exact motion of
the particle can be replaced by a random walk

FlG. 1. The geometry of the scatterers in the period-
ic Lorentz gas. The cross-hatching indicates a single
triangular trapping region.
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between triangular trapping regions. A single
such trapping region is shown by cross-hatching
in Fig. 1. The assumption implicit in this esti-
mate is that the sequence of traps visited is a
Markov process. This assumption should become
accurate for small W when the particle usually
bounces a large number of times in each trap.

One corollary of the work of Bunimovich and
Sinai is that the motion of the particle in the high-
density periodic I orentz gas is ergodic. This
fact allows us to calculate exactly the average
residence time, 7, in a trapping region. The
average rate, ~ ', at which a particle leaves a
given trap is determined by the fraction of phase
space available for exiting from the trap. The
total volume of phase space associated with a
single trap is simply 2'. where 4 is the area
of the trap. (The factor 2~ is the measure of
the velocity space. ) The portion of this phase
space from which a particle escapes from the
trap in a time less than 4t has a volume 6S'4t
since 3S" is the total length of the three exits
of the trap. The average rate for leaving a trap
is thus

7- '= 3 W-/~A.

cells in configuration space. In effect, it comes
from an "Eyring-like" approximation to the tran-
sition rate between cells.

The only assumption used in the derivation of
Eq. (6) is that jumps between trapping regions
are uncorrelated with one another. Because of
the strong mixing properties of scattering from
surfaces of negative curvature, this assumption
should hold so long as the moving particle col-
lides several times in each trap before moving
to the next trap. Thus the expected number of
collisions, g, per trap residence time v is the
appropriate parameter determining the validity
of the uncorrelated random-walk estimate. The
average time between collisions, r„can be cal-
culated exactly in the same way as ~ by replacing
the length of the trap ports which appeared in the
calculation of 7 by the length of the walls of the
trap, which is m. The result is that

r, = 4 V 3 (2 + W)' ——,'v

and that

(6)

In terms of ri, the high-density regime is defined
by

Expressing the trap area A in terms of W, we
obtain

3.4(g&~ . (9)

A= 4@3(2+W)

so that

7 =(m/6W)[2V 3 (2+ W) —&] .

(2)

This value for v is exact for all W )0.
From the average trapping time w we can ob-

tain an estimate of the diffusion coefficient,
D(W), by treating the trajectory of the particle
as a random walk between traps. In this approxi-
mation we suppose that each jump between traps
is independent of the previous jumps. For ran-
dom walks on two-dimensional isotropic lattices
it is well known that

D=l'/4v,

where l, the distance between traps, is given by

l = (2+ W)/v 3.
Combining Eqs. (3)-(5) we obtain the random-
walk approximation to the diffusion coefficient:

(5)

D, „(W) = (W/~)(2+ W)'[ v 3 (2+ W)' —2v]-'. (6)

Equation (6) can also be found by a method dis-
cussed by Zwanzig' in connection with the con-
tinuous-time random walk of a system between

Thus we have reason to hope that the random-
walk approximation will be aeeurate throughout
the high-density regime.

We have performed computer experiments on
the regular I orentz gas to determine the VCF
and its integral, the diffusion coefficient. The
computer program, written in single-precision
FORTRAN, initializes a single particle with a
random position on the perimeter of a scatterer
and a ra.ndom outward velocity. It then generates
the trajectory starting from that initial condi-
tion and compiles the statistics required to com-
pute the VCF at 200 time points. After 100000
collisions the VCF and its numerical integral
are computed. This procedure was repeated
five times for five different values of 8' and
once for four other values of 8'including W=O.
Each run consumed approximately 6 min of CPU
time on the University of Maryland Univac 1100/
80.

The VCF for W=0.0, 0.1, and 0.2 is shown in
Figs. 2(a)-2(c). Table I gives the value of the
diffusion coefficient obtained by numerical inte-
gration of the VC F. In each case the VC F was
measured at time intervals of 0.025 and inte-
grated out to a time of 50. Figure 3 records the
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suits throughout the high-density regime of the
periodic Lorentz gas. At the lowest two densi-
ties explored (W =0.2 and W=0.3) the random-
walk approximation begins to underestimate the
diffusion coefficient significantly. The reason
for this is that, at low densities, it is possible
for the moving particle to traverse a triangular
trapping region without collision. On the other
hand, at the highest densities explored, the
random-walk estimate falls within the error bars
of the computed diffusion coefficient. We con-
jecture that the random-walk estimate is asymp-
totically exact in the sense that

D(W ) . D,„(W) 2

W ~ 0 W v(2W3- n)
(10)

where D(W) is the true diffusion coefficient and
the number on the right-hand side of the equa-
tion is the leading coefficient in a power-series
expansion of D, „(W).

While the random-walk approximation gives a
good account of the integral of the velocity auto-
correlation function we do not have any similar
explanation for the rich structure of the VCF it-
self. It is surprising that such a simple model
should exhibit such a complex VCF.

The crucial feature of the periodic Lorentz
gas which allows us to map the dynamical system
accurately onto a stochastic model is the fact
that the trajectories are strongly mixed within

each trapping region in configuration space. For
this mixing to occur the traps must have the fol-
lowing two attributes. Firstly, their ports must
be small compared to their total perimeters,
and secondly, their perimeters must have convex
regions from which nearby trajectories can be
dispersed. A model in which the first but not
the second criterion is satisfied is discussed
elsewhere. ' On the other hand, the periodicity
of the Lorentz model studied here does not enter
in an important way into the random-walk analy-
sis; thus the same approximation scheme may
be applicable to disordered Lorentz gases at high
densities.
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