Diatomic Polymers, Mixed-Stack Compounds, and the Soliton Lattice

B. Horovitz and B. Schaub

Department of Nuclear Physics, The Weizmann Institute of Science, Rehovot, Israel

(Received 9 March 1983)

The continuum electron-phonon system is studied for $(AB)_x$ -type polymers with an average charge of $1 + \hat{\rho}$ per site. For $\hat{\rho} = 0$ spontaneous bond dimerization and soliton excitations are possible if $\alpha < \Delta_0$, where α is the intrinsic gap and Δ_0 is the spontaneous dimerization gap when $\alpha = 0$. Recently observed neutral-to-ionic transitions in mixed-stack organic compounds are reinterpreted as the onset of such bond dimerization. For $\hat{\rho} \neq 0$ spontaneous order and a soliton lattice are found even if $\alpha \ge \Delta_0$. The electronic gap then has a maximum at a finite $\hat{\rho}$.

PACS numbers: 72.15.Nj, 64.70.Kb, 71.38.+i, 72.80.Le

Phase transitions and soliton excitations in both polymers and charge-transfer organic compounds are of considerable recent interest.¹ Theoretical predictions²⁻⁵ that solitons exist in *trans*-polyacetylene have considerable support from both doping and photogeneration experiments.¹ The theoretical model for polyacetylene has been recently extended by Rice and Mele⁶ to describe $(AB)_x$ type polymers; solitons then have irrational charge values.

The analog of an $(AB)_r$ polymer for a chargetransfer compound is a mixed-stack compound, where donor and acceptor molecules alternate along the stacking direction. It was recently found that such compounds undergo a "neutral to ionic" phase transition as a function of pressure or temperature.^{7,8} Theories for such a transition consider the competition of the difference in on-site potentials (2α) with Coulomb energies,⁷⁻⁹ predicting usually a first-order transition. Experimentally, however, the transition is continuous and involves an intermediate region where neutral and ionic features coexist. In particular tetrathiafulvalene-chloranil⁸ shows a new infrared "ionic" mode coexisting with the "neutral" mode. This also implies a change in crystal symmetry.

Extensive early studies on a similar system, tetramethylphenylenediamine-chloranil,¹⁰ revealed also a phase transition. From the splitting in the ESR line and its anisotropy it was concluded¹⁰ that this transition also involves a symmetry change, namely a rotation of the chloranil ions. Here, however, optical absorption indicates that the system is "ionic" both below and above the transition.

Transfer integrals in these systems are fairly $large^{10}$ compared with α and the concept of "neutral" or "ionic" is not precise.^{7,8} We propose instead that the order parameter for these transi-

tions is bond dimerization, i.e., that donor-acceptor transfer integrals have alternating values. The charge is then continuously transformed from sites to bonds; this amounts to a change in the degree of ionization which is consistent with the changes in the optical absorption.^{7,8} The driving force is the electron-phonon coupling, rather than Coulomb interactions.

The proposed transition does not involve a change in translation symmetry since the unit cell contains donor-acceptor pairs in both phases. Instead inversion symmetry at the center of a donor (or acceptor) molecule is broken. The existence of this inversion above the transitions^{10,11} guarantees equal transfer integrals. Its absence below the transitions is consistent with the infrared⁸ and ESR¹⁰ data and it naturally explains why the Raman and infrared frequencies coincide.¹² This symmetry change is further supported by tetrathiafulvalene-fluoranil with only $P\overline{1}$ as space group¹¹; the most likely symmetry to be broken (excluding translation¹⁰) is inversion.

The proposed (T, α) phase diagram is shown in Fig. 1; Δ_0 is the dimerization gap if all the molecules were equivalent ($\alpha = 0$). The imposed site order competes with the spontaneous bond order and eliminates it if $\alpha > \Delta_0$. Under pressure Δ_0 can increase, by an increase in the transfer integral or electron-phonon coupling, and the system becomes ordered. For compounds with α $< \Delta_0$ also reduction of temperature leads into the ordered phase.

These ideas are evaluated explicitly for the continuum model of $(AB)_x$ polymers, neglecting Coulomb interactions.⁶ The model is solved also for the incommensurate system with an average charge density $\rho_0 + \rho$, where ρ_0 corresponds to one electron per site. We find exact soliton lattice solutions which describe the $\rho \neq 0$ system. These solutions exist even if $\alpha \ge \Delta_0$, i.e., the commensurate ($\rho = 0$) system is *not* dimerized. Thus, solitons are self-generated—both the order parameter and the modulation in it which defines solitons are formed simultaneously.

We start from the continuum model of polyacetylene⁵ describing electrons coupled to the acoustic ion displacement field $\Delta(x)$ in the adiabatic limit. The electrons are described by a spinor field $\psi_s^{\dagger}(x) = (u_s^{\dagger}(x), v_s^{\dagger}(x))$ of right- and left-moving electrons with spin s. The Hamiltonian is⁵

$$H_{0} = \sum_{s} \int dx \psi_{s}^{\dagger}(x) \left[-i v_{F} \sigma_{3} \partial / \partial x + \Delta(x) \sigma_{1} \right] \psi_{s}(x) + \int dx \Delta^{2}(x) / 2\pi v_{F} \lambda, \qquad (1)$$

where σ_i are Pauli matrices, $v_{\rm F}$ is the Fermi velocity ($v_{\rm F} = 1$ below), and λ is the dimensionless electron-phonon coupling. The ground state of this system has a gap $\Delta_0 = 2\Lambda \exp(-1/2\lambda)$ where Λ is a momentum cutoff. $(\frac{1}{2}v_{\rm F}\Lambda$ is the *A*-*B* transfer integral.)

In the $(AB)_x$ polymer the alternating on-site energies $\pm \alpha$ lead to a gap 2α which is orthogonal to $\Delta(x)$; α favors a charge-density wave centered on the sites, while Δ favors it on the bonds. The total Hamiltonian is then

$$H = H_0 + \alpha \sum_{s} \int dx \,\psi_s^{\dagger}(x) \sigma_2 \psi_s(x). \tag{2}$$

The ground state has an order parameter $\overline{\Delta} = (\Delta_0^2 - \alpha^2)^{1/2}$ for $\alpha < \Delta_0$ and no order $(\overline{\Delta} = 0)$ for $\alpha \ge \Delta_0$. At a finite temperature *T*, $[\overline{\Delta}^2(T) + \alpha^2]^{1/2}$ follows the BCS gap equation and the transition temperature occurs when this gap equals α (Fig. 1). The transition is of second order, in agreement with data on mixed-stack compounds.^{8,10} When $\alpha > \Delta_0$ reduction of temperature is not sufficient to induce the phase transition, but increase of Δ_0 (e.g., by pressure) is sufficient.

For $\overline{\Delta} \neq 0$ the ground state is twofold degenerate corresponding to $\pm \overline{\Delta}$, and solitons are possible excitations.⁶ The soliton charge Q is readily evaluated from the counting rule¹³: If $\Delta \theta$ is the change in phase of the off-diagonal term $\Delta(x) + i\alpha$

FIG. 1. T,α phase diagram for Eq. (2) in the commensurate case. Compounds A-Z are defined in Table I of Ref. 7. They are placed at their expected position at room temperature. A phase transition is induced by either temperature change in compounds D (Ref. 10) and F (Ref. 8) or by pressure change in compounds E-L, N, and Q (Ref. 7).

between degenerate ground states then $Q = \Delta \theta / \pi$. Since here α is constant and $\Delta(x)$ changes between $\pm \overline{\Delta}$, we obtain $Q = \pm (2/\pi) \tan^{-1}(\overline{\Delta}/\alpha)$, in agreement with the direct derivation.⁶ Additional 2π rotations do not change the topology, and amount to ± 2 additions to the soliton charge. The additional rotation can be made for only one spin component, resulting in ± 1 additions to the soliton charge and the presence of spin $\frac{1}{2}$. Thus the counting rule is an efficient method for evaluating soliton charges.

Soliton lattice solutions can be found by a mapping into the sine-Gordon system.¹⁴ Define $f_n(x) = u_n(x) + iv_n(x)$ for the electron eigenfunctions with eigenvalues ϵ_n . The electron equations of motion reduce to

$$\left[\epsilon_n^2 + \alpha^2 + \frac{\partial^2}{\partial x^2} - \frac{\Delta^2(x)}{\partial x^2} + \frac{\Delta'(x)}{\partial x^2}\right] f_n(x) = 0, \quad (3)$$

with the normalization $\int |f_n(x)|^2 dx = (\epsilon_n + \alpha)/\epsilon_n$ and eigenvalues restricted to $|\epsilon_n| \ge \alpha$. The equation of motion for $\Delta(x)$ in the adiabatic limit is $\delta \langle H \rangle / \delta \Delta(x) = 0$. This yields the self-consistency equation,

$$\Delta(x) = -\pi\lambda \left[\Delta(x) + \frac{1}{2}\partial/\partial x\right] \sum_{n} {'} |f_{n}(x)|^{2}/(\epsilon_{n} + \alpha),$$
(4)

where the prime indicates summation on occupied states and $\epsilon_n + \alpha \neq 0$.

The potential in Eq. (3) is given in terms of a solution of the classical sine-Gordon equation¹⁴ with Eq. (4) determining its mass parameter Δ_1 . In terms of the Jacobian elliptic function $\operatorname{sn}(u, k)$ with parameter k we obtain

$$\Delta(\boldsymbol{x}) = \frac{\Delta_1 \boldsymbol{k}}{1 + \boldsymbol{k}'} \operatorname{sn}\left(\frac{\boldsymbol{x} \Delta_1}{\boldsymbol{k}} (1 + \boldsymbol{k}'), \frac{1 - \boldsymbol{k}'}{1 + \boldsymbol{k}'}\right).$$
(5)

 $\Delta(x)$ has a periodicity of $l = 2kK/\Delta_1$ where K = K(k) is a complete elliptic integral. In each period $\Delta(x)$ vanishes twice, representing two solitons with charges Q (or -Q) and 2 - Q (or Q - 2). The average charge density (added to ρ_0) is then $\rho = \pm 2/l$.

The electronic spectrum has three gaps with valence band, conduction band, and two midbands. The midbands are separated from each other by a gap 2α at wave vector q=0, and from the valence or conduction bands by a gap $E_g = \Delta_1 k/(1 + k')$ at $q = \pm \pi/l$. The midbands are generated either empty or full so as to accomodate precisely the charge $\rho = \pm 2/l$; the valence band is full and the conduction band is empty.

By use of the known eigenfunctions¹⁵ of Eq. (3) it is straightforward to see that Eq. (4) is valid, with the parameter Δ_1 satisfying

$$\ln \frac{\Delta_1}{\Delta_0} = -\frac{\alpha^2 \mathbf{k}^4}{2\Delta_1^2} \int_0^1 \frac{x}{R^3(\mathbf{x})(1-k'^2 \mathbf{x}^2)^{1/2}} \ln \frac{1+x}{1-x} \, d\mathbf{x}.$$
(6)

Here

$$R(x) = \left[1 - k'^{2}x^{2} + (k\alpha / \Delta_{1})^{2}(1 - x^{2})\right]^{1/2}$$

and $k'^2 = 1 - k^2$; finite-cutoff effects¹⁴ are neglected, implying weak coupling, $\lambda \ll 1$.

The gap $E_g = \Delta_1 k/(1+k')$ can be considered as the order parameter of the system. The solutions of Eq. (6) for E_g as a function of $\rho = \Delta_1/kK$ are plotted in Fig. 2. For $\alpha < \Delta_0$, $E_g(0) = \overline{\Delta} \neq 0$ and decreases as a function of ρ , except for $0.98 < \alpha / \Delta_0 < 1$ where $E_g(\rho)$ has a maximum at a finite ρ .

The most interesting situation is found for $\alpha \ge \Delta_0$. In this case the commensurate system is not ordered ($\overline{\Delta} = 0$), and the charged excitations are extended electrons or holes. However, as soon as $\rho \ne 0$ a finite order parameter representing localized solitons is generated. It reaches a maximum at a finite ρ (Fig. 2). Thus the addition of charge to a nondimerized system enables

FIG. 2. Gap in the electron spectrum at the Fermi level as function of the excess charge density ρ . (Note $v_F = 1$.)

the bond ordering to be spontaneously formed.

We can understand this peculiar behavior by considering momentum space where the gap E_g is formed at $q = \pm \pi \rho/2$ while the gap 2α remains at q = 0. Thus for $\rho \neq 0$ the competition between the gaps E_g and α is weakened and a finite E_g appears.

Consider next the energy of the soliton lattice E_{s1} , relative to the energy of the commensurate $(\rho = 0)$ phase. A straightforward summation, $\sum ' \epsilon_n$, with the lattice energy yields

$$E_{s1} = \frac{2\Delta_1^2}{\pi k^2} \left(\frac{E}{K} - \frac{1}{2} k'^2 \right) + \frac{1}{2\pi} \left(\Delta_0^2 - \alpha^2 - \Delta_1^2 \right) + \frac{\alpha^2}{\pi} \ln \frac{\Delta_1}{k\Delta_0} + \frac{\theta(\alpha - \Delta_0)}{2\pi} \left(\alpha^2 - \Delta_0^2 - 2\alpha^2 \ln \frac{\alpha}{\Delta_0} \right) + \frac{\Delta_1^2}{\pi k^2} \left(1 + k'^2 - \frac{2E}{K} \right) \ln \frac{\Delta_1}{\Delta_0} + \frac{\alpha^2 k^2}{\pi} \int_0^1 dx \left\{ -\frac{1}{2} \left(1 + k'^2 - \frac{2E}{K} \right) \frac{x}{R(x)(1 - k'^2 x^2)^{3/2}} \ln \frac{1 + x}{1 - x} + \frac{(1 + k^2 \alpha^2 / \Delta_1^2)(1 + k'^2 x^2) - 2k'^2 x^4 (k'^2 + k^2 \alpha^2 / \Delta_1^2)}{R^3(x)(1 - k'^2 x^2)^2} k \ln \frac{k + (1 - k'^2 x^2)^{1/2}}{(1 - x^2)^{1/2}} \right\}, \quad (7)$$

where *E*, *K* are complete elliptic integrals and $\theta(\alpha - \Delta_0)$ is a step function. A low-density expansion of Eqs. (6) and (7) yields for the energy per soliton (here $\alpha < \Delta_0$)

$$\frac{E_{s1}}{\rho} = \frac{2\overline{\Delta}}{\pi} + \frac{2\alpha}{\pi} \sin^{-1} \frac{\alpha}{\Delta_0} + \frac{8\overline{\Delta}^2}{\pi\alpha} \sin^{-1} \frac{\alpha}{\Delta_0} \exp\left(\frac{-2\overline{\Delta}}{\rho}\right) \quad (\rho \to 0).$$
(8)

The first two terms are the single soliton energy (average of the two types) while the last term represents the long-range interaction between solitons. This interaction is exponential and repulsive; it tends to zero as $\alpha \rightarrow \Delta_0$ for a fixed overlap between solitons (i.e., fixed $\rho/\overline{\Delta}$). The energy per soliton from Eq. (7) is plotted in Fig. 3 as function of ρ/Δ_0 and of $\rho/\overline{\Delta}$. In the latter case the weaker repul-

1944

FIG. 3. Energy of the soliton lattice per soliton as function of ρ/Δ_0 (full curves) and as function of $\rho/\overline{\Delta}$ (dashed curves).

sion as $\alpha \to \Delta_0$ is apparent. For $\alpha > \Delta_0$ and $\rho \to 0$ the curves approach $E_{s1}/\rho = \alpha$, the energy of adding a single electron or hole to the nondimerized ($\overline{\Delta} = 0$) system.

Finally, we discuss the experimental relevance of these results. Solitons in general and fractional charge in particular are intriguing possibilities in $(AB)_x$ polymers or in mixed-stack compounds. An efficient method for detecting such charged excitations is their infrared activity.^{6,16} Their thermal excitation should lead to new infrared modes whose intensity is *temperature activated*. This activity is in fact consistent with the large dielectric constant of tetrathiafulvalenechloranil and its decrease with lowering temperature.¹⁷ The split ESR line may also indicate the presence of such solitons.⁹

Most of the relevant systems (e.g., see Fig. 1) have $\alpha > \Delta_0$ and do not order at low temperatures. Upon doping with excess donors or acceptors we expect a phase transition at low temperatures into an incommensurate charge-density wave. The transition temperature and the electronic gap at low temperatures should both have a maximum at a finite doping level.

We wish to thank D. Mukamel for very helpful discussions and J. B. Torrance for a useful correspondence. This research was supported in part by a grant from the U. S.-Israel Binational Science Foundation, Jerusalem, Israel, and by the Minerval committee.

¹For recent reviews, see Proceedings of the International Conference on Synthetic Low Dimensional Conductors and Superconductors, Les Arc, 1982 (to be published).

²W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. <u>42</u>, 1698 (1979), and Phys. Rev. B <u>22</u>, 2099 (1980).

³S. A. Brazovskii, Pis'ma Zh. Eksp. Teor. Fiz. <u>28</u>, 656 (1978) [JETP Lett. <u>28</u>, 606 (1978)], and Zh. Eksp. Teor. Fiz. <u>78</u>, 677 (1980) [Sov. Phys. JETP <u>51</u>, 342 (1980)].

⁴M. J. Rice, Phys. Lett. 71A, 152 (1979).

⁵H. Takayama, Y. R. Lin-Liu, and K. Maki, Phys. Rev. B <u>21</u>, 2388 (1980); B. Horovitz, Phys. Rev. B <u>22</u>, 1101 (1980).

 6^{6} M. J. Rice and E. J. Mele, Phys. Rev. Lett. <u>49</u>, 1455 (1982).

 7 J. B. Torrance, J. E. Vazquez, J. J. Mayerle, and V. Y. Lee, Phys. Rev. Lett. 46, 253 (1981).

⁸J. B. Torrance, A. Girlando, J. J. Mayerle, J. I.

Crowley, V. Y. Lee, P. Batail, and S. J. LaPlaca, Phys. Rev. Lett. 47, 1747 (1981).

⁹J. B. Torrance, in Ref. 1.

¹⁰G. T. Pott and J. Kommandeur, Mol. Phys. <u>13</u>, 373 (1967).

¹¹J. J. Mayerle, J. B. Torrance, and J. I. Crowley, Acta Crystallogr., Sec. B <u>35</u>, 2988 (1979).

¹²A. Girlando, R. Bozio, C. Pecile, and J. B. Torrance, Phys. Rev. B 26, 2306 (1982).

¹³Y. Frishman and B. Horovitz, Phys. Rev. B 27,

2565 (1983); T. L. Ho, Phys. Rev. Lett. 48, 946 (1982);

B. Horovitz, Phys. Rev. Lett. <u>48</u>, 1416 (1982).

¹⁴B. Horovitz, Phys. Rev. Lett. 46, 742 (1981).

¹⁵A. L. Fetter and M. J. Stephen, Phys. Rev. <u>168</u>, 475 (1968); B. Sutherland, Phys. Rev. A 8, 2514 (1973).

¹⁶E. J. Mele and M. J. Rice, Phys. Rev. Lett. <u>45</u>, 926 (1980); B. Horovitz, Solid State Commun. <u>41</u>, 729

(1982). $\frac{1}{2}$

 ${}^{17}\mathrm{G}.$ Gruner and J. B. Torrance, private communication.