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In view of the almost established triviality of p in four dimensions it is conjectured
that the mass of the Higgs particle in the minimal model is bounded by an amount that
can be estimated without the knowledge of the physics at shorter distances. A possible
numerical experiment which could give a nonperturbative estimate for the bound is
pr oposed.
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It is generally suspected that an interacting
continuum y theory does not exist in four di-
mensions, ' Specifically, there is no known
sequence of well defined, regularized systems
which admits a y' theory in four dimensions with
nonvanishing coupling in the limit of infinite cut-
off. There are various ways to look for such a
sequence. Although dimensional regularization,
as presently understood, does not really define
a cutoff model outside perturbation theory the
renormalization-group equations seem to force
the physical coupling into a narrow range when
the bare coupling is varied over all physically
acceptable values, In the limit of four dimen-
sions this range collapses to a point and the
physical coupling vanishes. ' Another approach
to the problem of establishing the existence of
an interacting renormalized field theory is to
look for a nontrivial fixed point in a class of
short-range systems with the appropriate sym-
metries. ' No such point has been found for y4.
In the search a variety of methods were used:
approximate renormalization-group recursion
relations, ' high-temperature expansions, ' and

direct numerical simulations. ' All of these
methods are outside weak-coupling perturbation
theory. Moreover, several authors have rigor-
ously proven theorems which appear to come
close to showing the triviality of y in four di-
mensions. ' The 1/N expansion when applied to
a, (Q, y, ') model, regularized in any of a num-
ber of ways, essentially gives the perturbative
renormalization-group result: The physical
coupling has to vanish if we demand the sequence
to make sense for a finite cutoff and a finite N. '

From a pragmatic point of view there is little
difference between a theory with a true (interact-
ing) continuum limit and an effective theory with

a cutoff at some very high, experimentally in-
accessible mass. In a y theory it is believed
that the ratio of the cutoff to the renormalized
mass m~ is bounded from above and its max-

imum is a decreasing function of the renormal-
ized coupling A.~. For small A.„, this ratio can
be very large and as an effective theory y4 makes
perfectly good sense, but as A.„becomes large
the cutoff required to maintain it moves down
toward m~. When A. ~ increases to the point
where the cutoff is comparable to w „ the model
ceases to make any sense, even as an effective
theory. The conclusion is that a y4 theory is
physically meaningful only if the coupling is suffi-
ciently weak.

In the Weinberg-Salam model the gauge and the
Yukawa couplings are known to be small and can
be treated perturbatively. '" If the self-coupling
of the Higgs field were to become large, it would
therefore renormalize in essentially the same
way as does A.„in a pure y' theory. But a strong-
coupling y theory seems to be impossible" and
it is likely that the Weinberg-Salam theory is
physically meaningful only if the Higgs self-
coupling is weak. The purpose of the present
note is to point out that this implies an upper
bound on the Higgs mass" which we estimate to
be of order I TeV. This value is close to the
estimate of Lee, Quigg, and Thacker" who
showed that for a heavier Higgs particle the tree
approximation must break down. Our results
indicate that higher orders in perturbation theory
cannot solve the problem. The bound is, in
principle, not exactly computable without a more
complete theory; however, because of perturba-
tive renormalizability it presumably can be rath-
er well approximated without any information
beyond the standard model. Our estimate is, at
best, rough; we will also describe a numerical
experiment which, if carried out, would yield a
precise number when the theory is regulated by
a lattice. The closer to the bound the actual
Higgs mass turns out to be the lower is the en-
ergy at which new physics has to come into play.
Only with a relatively light Higgs particle is a
"desert" up to grand unification scales theoreti-
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cally possible.
The basic observation is very simple. The

Higgs sector with one complex doublet 4 is de-
fined by

I., = —,'(s„c)'(»c) ——,'m, 'e 'c ——.
'

~,(c'~)'

and at the tree level we have

(mH/m~)'=8&, jg', (2)

where m H and m ~ denote the Higgs and W mas s-
es and g is the SU(2) gauge coupling. The mass
ratio in (2) can be used as a definition of the
physical coupling A.. Then, in order to increase
m H while m~ and g are kept fixed, we have to
increase A. by decreasing the cutoff. Since it is
meaningless to have a cutoff smaller than the
Higgs mass the latter cannot get arbitrarily
large. " To get a rough estimate we use the per-

turbative (or leading logarithm) result

Ij~ o- (3/27~2) ln(A/q)

and we obtain from (2)

4~ I 900 GeV
m~ g~ (lnA/p)'~2 m~ (lnA/p. )'~2

Working toward a more precise description of
the procedure to obtain the bound we first intro-
duce some simplifications. The U(l) part and

the Yukawa couplings are disregarded and the
gauge coupling is assumed to be sufficiently
small to validate keeping only leading terms in

g. This allows us to define the mass ratio (2)
entirely within the Higgs sector. Such a defini-
tion includes all orders in A.. In an O(4) [=SU(2)
A SU(2)] notation the Higgs sector is identical to
the Gell-Mann-Levi linear sigma model":

gl — ~ I, = ~(g g)2+ ~(s ~)2 ~/pe 2(g2 y g 2) ~
g (g2 y p2)2 (5)

The breaking of SU(2) 8 SU(2) down to its diagonal subgroup produces the ~ Goldstone particles which
give the W's a mass, m~' = 4 g'f, ', via a pole in the W -vacuum polarization":

J~ = os„f ~s„o, &O! I„"(x)!~'(u))=~f, &„&"e
In our approximation f, can be computed from the Higgs sector alone.

For a Monte Carlo simulation we propose to use the following latticized form of the Euclidean ver-
sion of (5):

S =Q„fQ„-,' p(x + p) p(x) tr [U(x + p) fjt(x)]+-,'p, 'p'(x) + 4X, p'(x) -3 ln p(x)],

Z=f gdp() f gdU(x) -',
where p is a. singlet under SU(2) 43 SU(2) and U

transforms as U- VUR' ~. The lnp term comes
from the integration measure. This parametriza-
tion might permit the replacement of the SU(2)
group manifold in which the U's take values by a
(hopefully) sufficiently large discrete subgroup. "
As a result, the simulation time could be re-
duced to an amount not significantly larger than
the amount needed for one component y.4

In the following we shall outline the procedure
to obtain the bound on the Higgs mass. First the
vacuum is aligned by a small symmetry-breaking
term

~S = -aP„ tr tr(x)

which has to be picked large enough to suppress
the vacuum averaging induced by the finiteness
of the system, but still sufficiently small that
the contributions due to spontaneous symmetry
breaking are much more important than those

! due to explicit breaking.
A "target" value of f, will be picked: f, ' will

be expressed as a finite, reasonable, fraction
of the size of the system (in lattice units). By a
procedure to be explained later on po' will be
varied starting from some large negative value
until the "target" value of f, is obtained. Next
the Higgs mass is measured. For a fixed size
of the system the process will be repeated for
several values of the bare coupling O-A., - ~.
The inverse lattice spacing (actually the sys-
tem's size in lattice units) acts as an ultraviolet
cutoff. From this experiment we obtain m „/m~
as a function of ~,. This function is obtained for
various values of the cutoff until, eventually,
the maximal value (as a. function of A.,) of the
Higgs correlation length becomes less than one
lattice spacing. This gives us the bound we are
after.
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We now turn to the question of how to measure
the Higgs correlation length and the pion decay
constant. For the Higgs mass we need a correla-
tion function which is sufficiently smooth in the
infrared. (Some nonanalyticity in the infrared
must appear because the massive particle is un-
stable and decays into pions. ") Thus we are
led to consider O(4)-invariant quantities. Since
we also need a controllable behavior in the ultra-
violet the most natural choice is the following
two-point function:

G( )=& p'( )p'(0)& —&p'&'

4

4 D,(k)e'"" .

In the continuum limit G(x) has an additional
ultraviolet divergence at x = 0. A finite result
will be obtained if a logarithmically diverging
constant is subtracted from D,(k)." We there-
fore define the Higgs correlation by

Q„x'G(x) (»)
G(x)

'

A simple but crude way to obtain an approximate
value for the Higgs mass is to quench the vari-
ables U." Alternatively one can replace the
tr[U(x+ p) U (x)] term in (7) by its vacuum expec-
tation value. If one considers a nonlinear gen-
eralization of (7) in which Uis in SU(N), these
two possibilities presumably correspond to N = 1
and N = ~, respectively. For consistency the re-
sult of Eq. (10) should come out at a value bound-
ed by these two extremes.

The measurement of f, proceeds by looking at
the power falloff of the U correlation and also at
the U vacuum expectation value:

~z)(tr U(x) Ut(0)) —tr((U))' —,, (11,)

In the continuum z is defined (in Hilbert space
notation) by

&0I U. ,~(x) I.'(u)&=-,'".,' e- "..
With use of standard current-algebra techniques
it can be shown that

Equations (18) and (11) show that f, can be meas-
ured without dealing with (the complicated) lattice
current-current correlations.

If no unexpected problems arise we would esti-
mate the computer time necessary for the imple-
mentation of the above project to be the equiva-

lent of a few thousand central-processing-unit
hours on a VAX 780/11 with a floating point ac-
celerator.

In this note, we have advanced the conjecture
that the Higgs particle of the minimal standard
model must, in principle, as a result of require-
ments of mathematical consistency, have a mass
smaller than some bound which can be estimated
without the knowledge of the physics at shorter
distances. A scan of all the energies up to about
1 TeV should therefore either find the Higgs
particle or observe new physics. Only if a rela-
tively low-mass Higgs particle is found is a
"desert" still a theoretically open possibility.

The estimate of the bound we gave is rather
naive; a Monte Carlo simulation of the type de-
scribed could give a better number but would re-
quire a large amount of computer time. It would

be useful if the 1/N expansion could be refined
to include the 1/(N +8) and 1/(N+2) factors nat-
urally and allow for the systematic computation
of corrections. " This might be possible in view
of the recent applications of 1/A to qua. ntum

mechanics. " Alternatively, the employment of
approximate recursion relations might give some
estimates for the bound which are of a nonper-
turbative nature. The availability of an analytic
approximation would be useful in studying other
Higgs-induced phenomena, such as the appear-
ance of non-Abelian magnetic monopoles.
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