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Blackbody Radiation Law: Quantum or Classical Explanation?

Adrian Patrascioiu
Physics DePartment, University of Arizona, Tucson, Arizona 85721

(Received 7 February 1983)

The long-time behavior of a system of two nonlinear oscillators interacting through a
linear continuous string is investigated numerically. The string is treated exactly (no
spatial lattice). It is found that such classical systems display many features normally
associated with quantum mechanics, such as a phase space which breaks up into an
infinite number of finite-size cells of ergodic motion.

PACS numbers: 03.50.Kk, 05.20.Dd

Nonlinear continuous media have been studied
numerically only indirectly, on a lattice, starting
with the celebrated work of Fermi, Pasta, and
Ulam. ' The results' have consistently failed to
support the classic point of view regarding the
equipartition of energy. Perhaps they have not
stirred more excitement in the physics community
for two reasons: (i) The systems analyzed may
possess an infinite number of conservation laws,
rendering them effectively linear; (ii) the results
could be a lattice artifact.

Actually, in the case of the blackbody problem,
the continuous medium is linear. The nonlinearity
is introduced into the problem through the inter-
action of the field with the nonlinear oscillators
in the walls of the cavity. In this paper I will in-
vestigate a one-dimensional version of this prob-

lem (two nonlinear oscillators interacting through
a linear string —Fig. 1). It has the advantage of
being partly soluble, so that no spatial lattice is
needed. The equations of motion are

z-~"=0, ~~~i,

m, z'(- 1, t) = p.z '(- 1, t) + E, (z(- 1, t) ),

m„z(1, t) = —p.z'(I, t) + E„(z(1,t) ).

(1)

(2)

(3)

z(x, t)=f(t+z)+ g(t-x).

Substitution into Eqs. (3) and (4) yields the follow-
ing system of ordinary differential equations with
time lag for f and g:

In writing them I have chosen units such that the
length of the string is 2 and the speed of sound 1.
The most general solution of Eq. (1) is

„f(t) = — „g(t —2) —
l [1(t) -g(t —2)]+&„(f(t) g(t - 2) ),

m, g'(t) = —m, f (t —2) + p (f (t —2) -g (t)]+I', (f(t —2) +g(t) ).

Specification of f(t), g(t), f(t), and g(t) on the interval [0, 2] uniquely determines f(t) and g(t) for all t.
It is trivial to verify that as a consequence of the equations of motion, the total energy

dx —+ + ' ' + y, (z(-1, t))+ " ' + V„(z(1, t)),
z" m, z(-1, t)' m„z(1, t)'
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FIG. 1. Two nonlinear oscillators coupled through a
linear continuous medium {string) . o
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where

z,. (~) =-d v,. /dz,

is conserved. In the work presented here, I have

v,. (z) =u,. z'/2+ ~,. z'/4+g, . i~i.
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Equations (8) and (9) were integrated numerical-
ly, and the conservation of energy was used to
verify the numerical accuracy. Before giving the
details of the computation and the results, I
would like to emphasize what outcome one would
predict using the same line of thought as in de-
riving the Rayleigh- Jeans formula: The system,
being nonlinear and (probably i') sufficiently com-
plicated, will wander with equal probability
throughout its phase space of given total energy.
The latter being infinite, the expectation value of,
say, the kinetic energy of one of the particles
will be zero. Moreover, since for the Gibbs dis-
tribution, ensemble averages and time averages,

A = lim A(T) = lim T ' f, dtA(t), (10)

are equal, one should observe that for any initial
condition, the time-average kinetic energy of
either particle tends to zero. Over my times of
observation, this does not seem to be the case t

The numerical method was verified by applying
it to a purely linear system (A, =g, = 0, i = 1, 2),
which can be analyzed analytically by normal-
mode decomposition. Typically, the numerical
accuracy is better and the time averages con-
verge faster than in the case of nonlinear sys-
tems. I would like to remind the reader that in
a linear system the equipartition of energy can-
not occur, and this is verified numerically. More-
over, since the system is always performing
some quasiperiodic motion, time averages de-
pend (continuously) upon the initial conditions.
This is shown in Fig. 2. The initial conditions
were (k, =k, =l, m, =m2=1, p, =1)

f (x) =A sin((ox+ m/2), g(x) = 0,

with A adjusted so that the total energy in the sys-
tem was 10 in each run. The system was followed
through 500 collisions and the accuracy was about
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FIG. 2. Time-average values of the kinetic energy
of the two balls vs time for co= 2.35 (continuous curves).
The data points represent the time-average value of
the kinetic energy {circles), particle energy (crosses),
and string energy (lozenges) as a function of the initial
conditions (~) at constant total energy Ez = 10. (a) Lin-
ear system (k; =1). (b) Nonlinear system g; =1, k; = 0.

10 per collision (one collision equals one inter-
action between the two balls).

As I have already stated, over my time of ob-
servation I detected no tendency for the time-
average energies of the particles to go to zero.
Under the assumption that the time of observa-
tion has been sufficiently long, this would rule
out the Gibbs measure, leaving two possibilities:
(i) the system is performing only quasiperiodic
motions; (ii) the phase space is broken dynam-
ically into an infinite number of finite-size ergo-
dic cells.

As illustrated by the linear case [Fig. 2(a)],
quasiperiodic motions yield time averages which
change smoothly with the initial conditions. In
Fig. 2(b) f show the dependence of the time-aver-
age kinetic energy, particle energy, and string
energy with &u [see Eq. (11)]for the following non-
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linear case:

Q, = Q, = A., = A, = 0, g, =g, = 1 = m, = m,„
= 10.

(12)

Please notice that these time averages remain
constant as v varies over some nonzero length
interval, then simultaneously change to a new

value, and so on. Thus, dynamically the phase
space breaks up into finite-size cells. The time-
average value of any quantity takes only certain
(discrete) values specified by the cell in which
the starting point was chosen. I have verified
that changing the nonlinear force to a purely cubic
one (g,. = 4,. =0; A, =1) leads to a similar behav-
ior, but changes the actual cells (for instance in
(u}.

Within a given cell the system seems not to be
mixing. Attempts to measure the Lyapunov ex-
ponent by studying the dependence of the correla-
tion

G(~}=- 1 dtz(t)z(t+ T)

(z the position of one of the particles) with T were
unsuccessful: rather than falling exponentially
with T, G was oscillating. Thus the Lyapunov ex-
ponent must be very small if not zero. Another
indication of weak or no mixing was obtained by
starting the system at two nearby configurations
in phase space and observing the two trajectories.
For instance, the positions of the two particles
were chosen as 0.2313 and —0.0243, and, respec-
tively, 0.2213 and —0.0242. After 24 collisions
they became —2.2268 and 0.3795, and, respec-
tively, —2.0812 and 0.4354.

It is interesting to investigate also the distribu-
tion of the energy of the- string among its normal

modes. To this end let

n „(t)= (1/E s)(c„'+n'n'a„'),

P„(t)= (1/Es)[d„'+ (n+~)'s'b„'].
(14)

In Fig. 3 I show the time-average value of a„
and P„as a function of n for one of the runs spec-
ified in Eq. (12). This distribution seems to
change with the initial conditions (cu) in the same
manner as the other time averages: It is constant
over some range; then it jumps to a new shape,
etc. My data on the time-average values of e„
and P „are poorer because of the large amount of
computation time needed for Fourier analysis.
However, in all the runs performed, the distribu-
tion of the energy of the string as a function of n
is highly peaked and shows no tendency of becom-
ing flat. Its actual shape depends upon the values
of the parameters as well as upon the initial con-
ditions. If all the parameters are maintained un-
changed and the total energy increased, the peak
broadens.

The final result I would like to report concerns
a system with two different springs and masses:

k; =0, m, =1, A, =1, g, =0,

m., =2, A =0,
(15)

z(x, f) = Q a„(t)cos(nwx) + b„(t) sin[(n+-', )vx],
(13)

z(x, f) = Q c„(t)cos(nnx)+d„(t) sin[(n+&)sx].
n=0

The fraction of the string energy in the nth mode
at time t is defined as (where E s denotes string
energy)
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FIG. 3. Fraction of the string energy vs the number
of nodes of the normal modes.

FIG. 4. Histograms of the energies of the two balls.
For comparison, the quantum mechanical spectra are
also shown. The g iz i potential has a higher ground
state, but a denser spectrum than the Az 4 one. Its
histogram is also Qatter and not peaked at zero energy.
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In this case time averages converged at a slower
rate. Consequently the system was followed for
longer periods of time (up to 520 collisions).
This led to a large violation of the total energy
conservation (up to 90%). Thus these data are
less reliable. It was verified by shorter runs
(185 collisions), with higher accuracy performed
on the Cyber. Qualitatively the results remained
the same. Two features of the data for this sys-
tem are noteworthy:

(i) In Fig. 4 I give the histogram of the total en-
ergy of each particle. They obviously depend
upon the potential seen by the particle. For com-
parison I indicate also the corresponding quantum
mechanical spectrum, with S determining the
overall normalization, arbitrarily set equal to
0.125.

(ii) The time-average values of the kinetic en-
ergy of the two particles, when averaged over
five runs having the same total energy, are very
nearly equal (1.084 and, respectively, 1.054).
The time-average values of the kinetic energies
in individual runs ranged between 0.74 and 1.36.

The analysis presented here concerns classical
continuous systems which have not been discret-
ized. I believe it is their continuous nature which
prevents such systems from reaching a regime
in which the phase space consists of only one
ergodic sea with islands of quasiperiodic motion.
In the presence of a (spatial) lattice cutoff, at
sufficiently high energy, such a regime would un-
doubtedly set in. For the continuous string, I
have raised the total energy up to 2000 without
qualitatively changing the results. The dependence
of the time averages upon the initial conditions
and the persistence of the behavior for different
force laws rule out, in my opinion, the existence

of an infinite number of conservation laws. Hence
I would venture to guess that the behavior I ob-
served is typical of nonlinear continuous media
in one dimension.

Are these peculiarities of dynamics in one di-
mension '8 Or perhaps the times of observation
were too short? I am in the process of answer-
ing these questions by new numerical experi-
ments. For now I feel that the available numeri-
cal evidence lends credence to my hypothesis re-
garding a possible phenomenological nature of
quantum mechanics. '

I would like to thank Willis Lamb for allowing
me to use his computer, and Sandhya Devi for
helping me with the technical aspects of program-
ming.

Note added. =Wince the submission of this paper,
the accuracy and the speed of the program have
been increased by 10' and 10', respectively. Thus
it became possible to follow a system in three
dimensions for up to 2400 interactions. Qualita, —

tively the behavior of the system is similar to the
one reported in this paper, although the presence
of cells has not been established yet, because of
the high cost of computing. These results will be
reported shortly.

'E. Fermi, I. R. Pasta, and S. M. Ulam, Los Alamos
National Laboratory Report No. LA-1940, 1955 (un-
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'For a review, see L. Galgani and A. Sootti, Riv.
Nuovo Cimento 2, 185 (1972).

3A. Patrascioiu, Cosmology and Quantum Mechanics"
and On the Nature of Quantum Behavior (to be pub-
lished, and Beyond the Mystery of Quantum Mechanics,
Festschrift for F. E. Low (jMIT Press, Cambridge,
Mass. , 1982).

1882


