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One-Dimensional Schrodinger Equation with an Almost Periodic Potential
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Recent theories of scaling in quasiperiodic dynamical systems are applied to the be-
havior of a particle in an almost periodic potential. A special tight-binding model is
solved exactly by a renormalization group whose fixed points determine the scaling prop-
erties of both the energy spectrum and certain features of the eigenstates. Similar re-
sults are found empirically for Harper's equation. In addition to ordinary extended and

localized states, "critical" states are found which are neither extended nor localized
according to conventional criteria.

PACS numbers: 71.55.Jv, 03.40.Kf, 71.50.+t

This article describes extensions of renormal-
ization-group work' ' on circle maps and invari-
ant curves of area-preserving maps' to the be-
havior of the Schrodinger equation with a quasi-
periodic potential. These models display inter-
esting spectra because a quasiperiodic potential
is intermediate between a truly random potential
which causes localization in one-dimensional (1D)
systems and periodic potentials which lead to en-
ergy bands and extended states. The weak-coup-
ling limit of this problem shares a common mathe-
matical foundation with the small-divisor perturb-
ation theory of Kolmogorov, Arnold, and Moser
(KAM)' and it is not surprising that certain of the
recent nonperturbative' ' approaches to dynamical
systems can be used in the present problem as
well.

Although the models we consider explicitly are
defined by a tight-binding Hamiltonian, KAM and
renormalization-group theory suggest that the
scaling results may be generally applicable to the
continuous Schrodinger equation as well. The
Hamiltonian B that we consider is defined by

II = g f- [c„„tc„—2c„rc„+c„tc„„]
n=1

+ V(nor) c„tc„t, (1)

where V(x) = V(x+1) and o is a "good" irrational
number. ' The operators c„t and c„are the usual
creation and destruction operators. Our most de-
tailed results are obtained for V(x) defined by

with v=(&5 —1)/2. We have also studied Harper' s
potential V(x) = V, cos[2tr(x —po)] a,s an example of
an analytic potential. The equations for Harper' s
potential have many convenient symmetries"
which can be exploited to guide the numerical

analysis.
We now summarize our results. In addition to

confirming a localization transition at Vo= 2 for
Harper's potential, we find the following new re-
sults:

(1) Scaling. We implement —numerically an em-
pirical scaling analysis in which the quasiperiodic
system is approximated by a sequence of periodic
systems with progressively larger unit cells of
size q„defined by the optimal rational approxi-
mants to tr, o„=p, /tI~. The spectra and wave
functions of both models satisfy scaling relations
(defined below) in the immediate vicinity of gap
edges and at other special points in the spectrum.
The potential (2) is always "critical" in the sense
that exponents are nontrivial and the wave func-
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(4)

tions are neither localized nor extended. Harp-
er's potential is critical in the same sense only
for V, = 2, while all exponents are trivial for Vp&

(2) Renormalization group. —A renormalization
transformation is constructed for model (2) which
confirms the scaling found numerically. For
Harper's potential we infer the structure of the
renormalization group from our numerical re-
sults as was done in previous problems. " There
is a trivial fixed point for extended states and a
critical fixed point which governs the localization
transition. If there are no other relevant param-
eters present, we expect the same fixed points
and exponents for any quasiperiodic operator of
the form (1) with Vanalytic (e.g. , Harper's po-
tential). In our study it is necessary to control
the rotation number of the wave function and we
see no way to obtain results of comparable gen-
erality for quantities averaged over the spec-
trum. '

To proceed further we need several definitions.
All our calculations are done for o =(v5 —1)/2
=—0~, though we believe that here, as in related
problems, ' ' similar results hold for any irration-
al v which is the root of a quadratic equation with
integer coefficients.

For o = o~, o» = q», /q», where q„are the Fi-
bonacci integers defined by q„,+q„=q„„, pp 1,
and q, =2. The spectrum for o~ has q„—1 gaps
which may be labeled by the Bloch index K,
=Y(sa» mod 1), where lsl &[-', (q, +1)] and the
square brackets denote the integer part. (We
have divided the Bloch index in an extended zone
scheme by 2wq». ) The size of the gaps decreases
roughly with increasing s." In the quasiperiodic
limit the Bloch index becomes the rotation num-
ber K which continues to exist for all energies""
and is a convenient way to label the states. There
are now a dense set of gaps at z, =-', (so mod 1).

To characterize how the spectrum scales, we
define factors 5(x) and y(z) in terms of E»(a), the
energy of the state with rotation number K for v
= o„. Note that K is a monotone (nondecreasing)
function of E. Let

E»(~) —E, „(»)
,„„E,„(~)—E„„,(») '

where p implicitly depends on x and is the small-
est integer (if any) such that the limit exists.
Given that p is finite, we define the p different
scale-invariant band structures near E„(») .by

E, (p, K) =lim y" (K)[E» „(K+pv ) —E„(K)],

+(n) = e' """X(no), (5)

where )((x) is smooth and periodic. '" " In ad-
dition to these extended states, we can expect' to
find states which are square summable for other
values of energy and potential strength. When the
potential is nonanalytic and of the form (2) and
when V, = 2 for Harper's potential we find that the
solutions to the discrete Schrodinger equation do
not fall into either of these categories. " These
states, which we will term critical, have a maxi-
mum at a site N„ for 0 = O„and a series of subsi-
diary maxima at sites N, which do not decay to
zero. For certain A, the amplitude obeys lg(N»)/
g(N») l

- w if 1 « lN, —N, l «q» and a scaled ver-
sion of the structure about N~ occurs around the
site N„.

The degree of localization around the central
site N„ is measured by the exponent P defined by

ln )
- p(v) (6)

1 L~
lna l.

when 1 «rn «k, where the norm L is defined by

i.= [q. ' Z l~( .N, ) I'].
n =0

An ordinary extended state has P=0 while a local-
ized state has p = —1. When p exists for a state
4 it follows that the Liapunov exponent (defined
below) l is 0, while if l & 0, p does not exist.
Our critical states are characterized by —1 & p
&0.

The quantities defined in Eqs. (3)-(5) a, re read-
ily found numerically. For any rational approxi-
mation to o; the bands consist of those energies
for which

Itr g M(no )I -»

(7)

n =1

where M(x) is the matrix with elements M» = 2
—E —V(x), M»=-1, M»=1, and M»=0. A sim-
ilar matrix product with o replacing o„relates
[4(n —1), 4'(n)] to [4(0), 4(l)] in a quasiperiodic
system.

The renormalization procedure of Ref. 1 applied
to M(x) induces a renormalization operation on
the matrix string. For the potential in Eq. (2)

where y(v) is defined to make the limit exist and
0 &j &p.

Characterizing the states which exist at various
energies in the spectrum is more subtle. In a
periodic system, there are a pair of extended
states at each energy in the band, and a single
extended state at the gap edge. For quasiperiodic
potentials, in the limit where KAM theory- applies,
one expects to find the generalized Bloch form:
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and 0= 0~ the matrix string assumes the particu-
larly simple form. . .BABAABAABABAABA,
where A and B correspond to V(x) = e/2 and —~/2,
respectively. Our renormalization group is then
identical to the irrational decimation discussed
by Feigenbaum and Hasslacher' where it is ob-
served that the string is invariant under T[A, B]
= [BA, A]. Denoting the original matrices [A„B,],
we define T"[A„B,]= [A«, B„]." A fixed point or
limit cycle can only exist for energies in the spec-
trum where lim„„my~ mod 1 converges to a limit
cycle. In general, therefore, we expect that the
renormalization transformation behaves ergodical-
ly on some set which is universal but whose ele-
ments are not self-similar (cf. Ref. 1, Sec. 7).
For energies in a gap, we expect the sequence of

(xo+ xo + xi)/x2

matrix products ps, M(on) to grow as e~',
where l & 0 in accord with the usual definition of
the Liapunov exponent l.

We now turn to a presentation of specific re-
sults. For the discontinuous potential (2) the
transformation T acts on a six-dimensional space
consisting of pairs of unimodular matrices.
There are, however, many invariants 1 ~D of T'
defined by two matrices C and D: I cD=det[CAB
—DBA]. Only four of these are independent: I,
=det[AB-BA]=- e', l, =l » 2i = [a'+4s(4E —E'
-3)]/4, I,= I i&»= —[e'+(4 —2E)a+2]/2, and

I4 I ] 2 22 ——e, where the matrices (m" )»

At a gap edge at &(so mod 1), the matrices [A„,
B~] are conveniently parametrized by xo, . . . , x,
implicitly defined by

(8a)

( 1)~«-y (a)B

—x2xp —(x, +x,)

x3xp
x,x, +(x,x,) '+x,
x,[1+x,(x~,) ']

(8b)
—x,(1 + x,/x, x,)x,x, —(x, + x,x, )

where x„.. . , x, are finite and x, - n" with!a!
~1. Each entry in the matrix A and B tends to
~ although the Liapunov exponent is zero. (The
function Q is defined by Q, (s) = sq„, + q«[so] and
Q„=q„when «=-', .} The transformation T in the
limit xp: induces a transformation T on xy, . . . ,
x, which is independent of x,.

At a gap edge, we find a fixed point of T' with
one relevant, two marginal, and two irrelevant
directions. The relevant eigenvalue A, = 5= y as it
must at a fixed point with only one relevant direc-
tion. One marginal direction is perpendicular to
a surface of constant —e'= I,. The other margin-
al direction is associated with the variable x,
which turns out to be redundant in the limit x,

This explains the observed fact that all eigen-
values are equal at all gap edges. The other in-
variants I„ I„and I4 are not differentiable in
the limit x, = ~ and do not determine any eigen-
vectors.

The characterization of the gap-edge states is
subtle. There is clearly a preferred initial vec-
tor [4(0), |f(1)]=[1, —x, ] so that the amplitude at
sites which are a Fibonacci number away from
the origin remains finite. This would seem to be
the analog of the single extended gap-edge states
in a periodic system. However, we have found
numerically that the hull function y in Eq. (5) is

! discontinuous and the states are critical. For
other initial vectors we find that the envelope of
4'(n) grows as ni'"'"'~'""&'i. For ~=2, p= 2 we
find from the fixed point y= 6= A. =8.28238608
+10 ' and o. =3.40814760+10 ', while a calcula-
tion of g'yields P =-0.257+0.01 and 7=1.051
+ 0.01.

Although we have not made a systematic study
of states away from the gap edges, we have ex-
amined the case ~=& in some detail to illustrate
the type of scaling behavior we can expect at val-
ues of ~ which do not correspond to a gap edge.
We find that T' has a fixed point [A*,B*]with all
matrix entries finite. There is one relevant eig-
envector at the fixed point, four marginal direc-
tions corresponding to each of the invariants I,
and one irrelevant direction. Using P =3 and a=2
in Eq. (3), we verified that the relevant eigenval-
ue A, of T' satisfies A,

' ' = 8.123 105 627 + 10 and
is equal to 5 and y . (This reflects the fact that
the scaling of the spectrum corresponds to a sub-
cycle of the scaling of the matrices themselves,
analogous to the situation at the gap edges. ) The
two solutions to the Schrodinger equation at this
energy are critical and at e = 2, P = —0.77049 5

+10 ' and 2~= e+ (e'+ 4)' ' to twelve figures.
The natural parameter space for Harper's equa-
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tion consists of E Vp and a free phase y,. By
use of duality, Aubry and Andre' have argued that
a typical state will be extended for V, ( 2 and ex-
ponentially localized above this critical value.
In the vicinity of a gap edge for V, (2 the spec-
trum scales according to Eqs. (3) and (4) with the
trivial exponent ()= —y= —oo ' and P =1 for all y,.
At the gap edge itself the product matrix S(q~)
=g„'», M(no) is again conveniently expressed in
the form (8a) up to a finite similarity transforma-
tion. The quantities xo/q~, x„, and x, converge to
smooth periodic functions of (o, (within a finite
cycle) in the limit 0- ~. There is a single ex-
tended state of the form in Eq. (5) with )(smooth.

Although convergence is poor, precisely at Vp

=2, we find that y assumes a nontrivial value of
approximately 3.1 with P =1. This value is inde-
pendent of yo. However, the limit in Eq. (3) no
longer appears to exist unless we choose the
phase y, = y*. The phase y* can be determined
by duality to within integer multiples of o~ for a
given & There are clearly two relevant opera-
tors for gap-edge states at V, = 2 corresponding
to changing q, and E. We find that for any ration-
al approximation to oo, |1(n) has one or two sim-
ilar maxima at sites N„whose phase N„cr~modl
converges to y*. The scale-invariant structure
of the 4 appears to be governed by the relations
described previously for critical states. For x

P = —0.89 +0.02 and T=4.73+0.02. The func-
tion )( in Eq. (5) is discontinuous but bounded.
For V, & 2, these states become exponentially
localized.

We have also examined a variety of states in
the quasiperiodic limit that are not at gap edges.
For Vo ( 2 (weak coupling) the matrices S(q„) re-
main bounded and their trace approaches 2cos(2
&&mzq~). There are two independent extended
eigenstates (5) with )( smooth. Localization again
occurs for V, & 2. In the weak-coupling regime,
and with K suitably far removed from a gap, we
believe that S(q„) will tend to a set which is
isomorphic to the simple rotations.

A number of recent papers have considered
special quasiperiodic operators which are exact-
ly solvable or have employed uncontrolled ap-
proximations. " By contrast, the renormaliza-
tion group discussed here and extensions thereof
permit one to establish the universal features
associated with typical or generic potentials since
the relevance or irrelevance of perturbations
about the fixed points can be analyzed.
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