
VOLUME 50, NUMBER 23 PHYSICAL REVIEW LETTERS 6 JUNs 1983

Resonance-Enhanced Atom Scattering from Surface Phonons

D. Evans, V. Celli, and G. Benedek(')
DePartment of Physics, University of Virginia, Charlottesville, Virginia 32901

J. P. Toennies
Max Plan-ch Inst-itut fur Stromungsforschung, D 3400 G-ottingen, Federal RePublic of Germany

and

R. B.Doak
Bell laboratories, Murray Hill, New Jersey 07974

(Received 23 December 1982)

Phonon-assisted resonances with surface bound states are shown to give important
effects in time-of-Qight spectra of He scattered from a Lir (100) surface. The com-
parison with theory indicates that inelastic resonances produce sharp distortions in the
response of the surface phonon spectrum. At low temperature, theory predicts that
resonances can locally amplify the phonon response by an order of magnitude.

PACS numbers: 63.20.Dj, 68.30.+ z

Time-of-flight (TOF) spectroscopy of atom scat-
tering from crystal surfaces has been successful-
ly used to obtain detailed information on the dis-
persion of surface vibrations. " High-resolution
TOF spectra show, besides the sharp peaks cor-
responding to Rayleigh waves (RW), a complex
structure which reflects the bulk phonon density
projected onto the surface. From a theoretical
point of view, the TOF spectra are related to the
phonon densities through the coupling coefficients,
the Bose factor, and the Debye-Wailer factor.
These quantities are fairly well known in the
framework of the distorted-wave Born approxi-
mation, "the eikonal approximation, ' or the hard
corrugated surface model. ' Thus, one could in
principle derive the surface phonon densities from
the inelastic scattering intensities and gain a full
knowledge of the dynamical behavior of clean sur-
faces and adsorbate layers. In practice, it is
highly desirable to base the data analysis mostly
on model-independent kinematic considerations;
the full theory is then used to assign with confi-
dence the observed structure to particular physi-
cal processes.

A discussion of the effects of bound- state reso-
nances on the angular distributions of scattered
intensity has already been presented. ' In this
Letter we show that phonon-assisted resonances
with surface bound states have dramatic effects
on the atomic TOF spectra. The interference be-
tween the directly scattered beam and the beam
passing through a bound state can give a sharp
maximum (or minimum) corresponding to the
particular phonon momentum and energy required
to accomodate the incident atom in the bound

state. As long as such resonant features cannot
be distinguished from the singularities of the
phonon density, the atom scattering spectroscopy
of surface phonons suffers from a serious limita-
tion. The kinematics of phonon-assisted reso-
nance was first considered by Cantini, Felcher,
and Tatarek in connection with angular distribu-
tions. ' Here we have calculated separately the
nonresonant and resonant contributions to the in-
elastic scattering intensities and compared them
to the experimental results for some situations
where kinematics indicates that resonances
should be seen.

Time-of-flight spectra of 4He scattered from a
LiF (001) surface along the (100) direction were
recorded with the apparatus and procedure of
Ref. 1. The experiments measured the in-plane
intensity at a final angle complementary to the
incident angle 6), Figure 1 shows the inelastic
intensity plotted as a function of the parallel mo-
mentum transfer K, for two slightly different val-
ues of the incident momentum (j'g,. = 6.06 and 6.14
A '), at the same incident angle (8,. =64.2'). The
two experimental spectra show remarkable dif-
ferences, especially in the intensity of the Ray-
leigh wave near —3.45 A '. The calculation based
on the breathing shell model for surface lattice
dynamics and nonresonant scattering theory for a
hard corrugated surface' (Fig. 1) is unable to re-
produce the details of either spectrum, nor can
it account for the differences between the two
spectra.

Kinematics indicates that the discrepancies
arise from inelastic resonances. The condition
for a resonance assisted by a phonon of frequency
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FIG. 1. TOF spectra of He scattering from LiF(001)
along (100) for 6; = 64.2' and slightly different values

of the incident momentum [(a) k; = 6.06 and (b} 6.14 A 'j.
Arrows mark inelastic resonances for N= (1,1) and n

= 1,2, 3. Rayleigh wave peaks (R) are shown together
with the incoherent elastic peaks (E). (c) The cal-
culated nonresonant reflection coefficient has practi-
cally the same shape for both sets of experimental
parameter s.

-2.5

&u and parallel wave vector Q = K —G (where G is
a surface reciprocal-lattice vector) is

ha = E, [ —1 + (1 + K/K; )' tan' 6,. ]. (2)

The functions defined by Egs. (1) and (2) are plot-
ted in Fig. 2, together with the RW dispersion
curves. The resonances occur wherever these
two functions intersect; experimentally visible
resonances are indicated by arrows in Fig. 1.
Figure 2 explains the spectacular enhancement of

where rn is the atomic mass, K;=k, sin0,. and E,
are the incident parallel wave vector and energy,
N is the surface reeiproeal-lattice vector coupling
the final state to the bound state, —ie„i (n = 0, 1,
2, 3) are the bound state -energies, ' and ~ and K
are related through the energy-conservation law

FIG. 2. Parabolas representing the inelastic-reso-
nance condition for 8; = 64.2, k; = 6.06 (above) and
6.14 A ~ (below), N= {l,l) and n = 0, 1,2, 3 (full lines),
with the corresponding scan curve (dashed line) and
the HW dispersion curves (dot-dashed lines).

the RW scattering observed for P. = 6.06 A ' by
showing that the resonance with N= (1, 1), n =1
occurs exactly on top of the RW. For k,.=6.14 A. '
this resonance is shifted outside the region of al-
lowed one-phonon processes and the RW peak be-
comes small, in agreement with theory. Also,
the resonant intensity becomes weak, but is not

vanishing, indicating that many phonon pro-cesses
are present in the background. Another resonance
[N=(1, 1), n=2] appears at about -3.22 A ', en-
hancing the scattering due to bulk acoustic pho

nons.
We have shown that sharp enhancement is found

where resonances are predicted, but ean any
resonant mechanism provide an explanation for
the observed amplitudes 7 We calculated the reso-
nant intensities by generalizing the Celli, Garcia,
and Hutchison formalism" to include inelastic
processes. " The atom-surface potential is divid-
ed into a laterally smooth attractive part, V„
and a short-range repulsive part, V„, which con-
tains the static and dynamic surface corrugations.
The elastic and inelastic scattering matrices for
V„are assumed to be known, and are denoted
respectively by S(G', G) and S(G+Q, G). Here G

stands for parallel momentum K,.+ 6 and energy
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FIG. 3. TOF spectra for He scattering from LiF(001) along (100) for k; =6.06 A i and 6; = 63.2, 64.2, and 66.2'.

The experimental data (a) are compared to the calculated nonresonant spectra (b) and to the results of the full cal-
culation (c). The resonant factor alone is shown in (d) for two values of the surface temperature T, . The plot for
T~ = 300 K (full line) is multiplied by 3. The effect of T, is included in the manner of Hutchison (Refs. 11 and 13),
with the assumption of a root-mean-square surface displacement 0.090T, A. The maxima [marked by arrows in
(a)] correspond to the inelastic resonances for N= (1,1) and n = 1,2, 3 t as shown in (d)]. Almost degenerate with
the n = 2 peak, and affecting its shape, is an out-of-plane inelastic resonance for N= (2, 0) and n = 0, which by it-
self gives a minimum.

E, +D, where D is th. e well, depth; G+Q stands for parallel. momentum K,. +G+Q and energy E, +h&o+D. .

Tbe effect of adding D to the energy is to change the perpendicular momentum from k, to P = (k, '
+ 2mD/5')' '. The calculation of the S-matrix elements for a bard corrugated wall is described below.

The elastic and inelastic amplitudes B(G) and B (G+Q) for scattering from V, + V„are obtained by
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(3)
(4)

+Q}('/(D&~'. The complete theory [Fig. 3(c)] is
obtained by including temperature effects through
a Debye-Wailer factor"" corresponding to T,
= 300 K. The bound-state energies and the sur-
face corrugation amplitude are taken from
Hoinkes's review article. ' Qne can see that both
the location and the calculated strength of the
resonances are needed for a qualitative agree-
ment with the experimental spectra. In particu-
lar the resonant factor for 0,.=63.2 shows the
broadening effect of the Debye-Wailer factor at
T,= 295 K, which reproduces fairly well the ob-
served resonance widths. For 0,-= 64.2' the in-
tense resonance n=1 accounts for the observed
enhancement of the RW peak. Qn the other hand,
the resonance n= 3 is slightly apart from the
sharp peak in the phonon density, yielding only a
broadening of the experimental peak.

It is interesting to note that at low temperature
theory predicts extremely sharp and intense reso-
nances which can locally amplify the scattering
intensity by an order of magnitude. This effect
could be exploited to tune certain particular pho-
nons, e.g. , optical surface phonons, which are
weakly involved in atom scattering, and thus make
their response observable through resonance-
induced amplification.
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solving the equations

B(G) = S(G, 0)(A,, /P,.)' '+ QyS(G, N)R(N)B(N},

B(G+Q) = S(G+Q, 0)(k;, /p, )' '+QNS(G+Q, N)R(N)B(N)+QgS(G+Q, N+Q)A(N+Q)B(N+Q).

Here A(N) and R(N+Q) are reflection amplitudes
from V„which have modulus one for beams in
the well and are negligible otherwise. Thus the
sums over N are in fact restricted to states in
the well, and we can first solve for the elastic
and inelastic amplitudes in the well, B(N) and

B(N+Q), and then compute B{G)and B{G+Q)for
the outgoing beams.

The first term in Etl. (4) is just the scattering
amplitude for V„alone. Qne can divide this out
to obtain the factor containing the resonances.
The second term describes the inelastic scatter-
ing out of the elastic beams in the well, and is
important when the incoming beam is at reso-
nance [i.e., some B(N) is large]. Under such a
condition the entire inelastic spectrum is affect-
ed. The third term describes elastic transitions
out of the inelastic beams in the well, and is im-
portant when the outgoing beam is at resonance;
it produces sharp structures in the TQF spectra
at well defined phonon momenta. '"

The elastic hard-wall matrix elements have
been obtained by solving the Rayleigh equation
with the iterative method of Lapez, Yndurain,
and Garcia. " The inelastic matrix elements are
obtained by a simple generalization of this pro-
cedure. To first order, each phonon mode can
be treated separately; further, a classical treat-
ment of the phonon field gives the correct answer,
provided that the Bose-Einstein factor is intro-
duced. We are then left to solve the static prob-
lem with a corrugation g(R)+ 2D& cos(Q .R},
where f(R) is the static corrugation and Dais
phonon induced. The Rayleigh equations are then
solved to first order in D&. The resulting in-
elastic amplitudes are approximately

S(G+Q, 0) = 2ik, ,Do A(G+ Q), (5)
where A(G+Q) is computed in the same way as
for the elastic amplitudes, but for final energy
E,.+ ~. The important point is that all the inelas-
tic amplitudes S(G+Q) are proportional to Dg.
Finally, then, ~B(G+Q)~' is given by the product
of the surface-projected phonon density times a
resonant factor that does not depend on the pho-
non displacements.

A comparison of theory and experiment is
shown in Fig. 3 for 4,. = 6.06 A ' and for three
closely spaced incident angles. In order to dis-
play the effect of resonances, we have also plot-
ted, in Fig. 3(d), the resonant factor {k&,/k, ,) ~B(G


