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Photoinduced Macroscopic Quantum Tunneling in Superconducting Interference Devices
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It is shown that a time-varying magnetic field through the superconducting loop in a rf
SQUID can cause transitions between the fluxoid states. Experimental observation of
these transitions should constitute evidence for the quantum mechanical character of the
macroscopic variable, the total flux through the loop. In the case that dissipation is
characterized by linear damping in the quasiclassical limit, the photon absorption process

I

depends critically on the ratio of the resistance of the weak link to the fundamental unit
of resistance h/e~.

PACS numbers: 74.50.+r, 03.6G.Bz, 73.40.0k

It has recently been argued that quantum tunnel-
ing between the metastable fluxoid states in a
superconducting quantum interference device
(SQUID) may constitute evidence that a collective
variable which describes the macroscopic state
of a complex system, in this case the total flux
through the superconducting ring, obeys the su-
perposition principle of quantum mechanics. ' In
addition, since the stability of supercurrent and
the associated phenomenon of flux quantization
are such striking features of a superconductor,
it is of some interest to ask when and how the
stability of the supercurrent-carrying state
breaks down, especially at very low temperatures
where the only available fluctuations are quantum.
Since for a bulk superconductor the decay rate
due to quantum fluctuations is cosmologically
long, it is indeed remarkable that in going from
a superconducting ring to one interrupted by a
weak link (a rf SQUID) the rate of decay of cur-
rent-carrying states due to quantum fluctuations
can be made experimentally accessible.

As important feature of macroscopic tunneling
is the role of dissipation, as represented by the
coupling between the macroscopic variable and
the environment. This coupling can potentially
take many forms, but of particular interest is
the case where the quasiclassical equation of mo-
tion (where the total flux plays the role of a parti-
cle coordinate) contains a dissipative term linear
in the time derivative of the coordinate. The ap-
plicability of this form of dissipation rests on the
semiquantitative success of the phenomenological
equation commonly known as the resistively
shunted junction (RSJ) equation 2 Recent calcula-

tions have shown that, while dissipation can be
expected to result in a strong suppression of the
tunneling rate, the rate should still, at least in
principle, be observable at low temperatures
with present-day experimental techniques. ' In-
deed such a tunneling rate may already have been
observed in the related problem of a current-
biased Josephson junction. More recently one
of us' examined the case in which the applied ex-
ternal flux (i.e. , the flux through the loop due to
the applied external magnetic field alone) in a
SQUID is (2n + l)p, /2, where n is an arbitrary in-
teger and p„ the flux quantum, is equal to 6/2e.
In this case, if PI. =2' II,/p, is greater than unity,
the potential energy for the total flux consists of
two degenerate wells. Here I- is the inductance
of the loop and I, the critical current of the weak
link. It was shown' that linear dissipation of the
sort discussed above can result in a spectacular
reduction of the tunneling rate, leading to a van-
ishing mean rate at zero temperature if the resis-
tance of the weak link is less than a critical re-
sistance.

In this paper we consider the effect of the coup-
ling of the macroscopic variable, the total flux
through the SQUID, to the electromagnetic field,
and explore the possibility of photoassisted tun-
neling between the fluxoid states. Such a photo-
induced transition, if observed, would be striking
because it involves a transition between two
macroscopically distinguishable states caused by
the absorption of a single photon. Furthermore,
the observation of the transition process would be
a direct verification of the macroscopic quantum
behavior since &z appears explicitly in the relation
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between two measurable quantities, the energy
difference of the two states between which the
transition takes place and the threshold for the
induced transition, as well as implicitly in the
magnitude of the transition rate. Also striking is
the fact that in the presence of linear dissipation

~

the photon absorption rate depends critically on
the ratio of the normal resistance to the same
critical resistance mentioned above.

The Lagrangian that we use to describe the com-
plete system is the one employed by Caldeira
and Leggett'.

& =pCj"—U(p)+Q„( ~nz x ' —~m ~ 'x„') —(p~)„f„~

Here ~ is the capacitance and the set of variables
(x„,xj represents the degrees of freedom of the
environment whose spectral density J(~) is

J(cu) = qvQ „(f„2/m (u„) b(u) —(u„).

All information concerning the effect of the en-
vironment on the flux dynamics is contained in
&(&). It can be shown that if J(~)- ~/R as ~ - 0,
then in the classical limit p obeys the equation
of motion given by

Cj+ y/R =-dU(p)/dy,

which is precisely the widely used phenomenologi-
cal BSJ equation. We shall consider a model in
which &(&) =tv/R up to a high-frequency cutoff ~,.
The potential energy U(p) is., in the case of a
SQUID,

When tsi. is greater than unity, U(p) consists, in
general, of more than one minimum (see Fig. 1).

~

p plays the role of a macroscopic particle" co-
ordinate. We consider the situation in which U

has at least two minima so thai the particle can
make a transition from the lowest minimum to a
metastable minimum an energy 2& above it via
the absorption of a photon with energy @~~ 2&.

Now, imagine introducing a small-amplitude
time-dependent magnetic field through the super-
conducting loop which produces a time-dependent
external flux, p„,=p„,'+ &p„, cos(&t). We
assume that we are in the linear response regime„
or in other words that ~P„, is small. We are in-
terested in calculating the transition rate of the
particle between the lowest states of adjacent
metastable wells. The calculation will be per-
formed in a truncated basis. We expect this ap-
proximation to be valid, at least so long as@a,
» 2~, where @, is the spacing between levels in
a single well (see Fig. 1). We are left with an ef-
fective two-level system (corresponding to the
two wells) coupled to the environment described
by the Hamiltonian

g= —eo, —az„+Q„h(u„(b "b + ~) + y„,o,Q f„(h/2m (u„)"'(b„+b ),
where + p are the locations of the minima, the
u''s are the Pauli matrices, and the ~'s are pho-
non creation operators. The mapping to the ef-
fective two-level system requires two further
adjustments. & is an effective tunneling matrix
element renormalized by the dissipation and the
cutoff , is proportional to the inverse tunneling
time. For the case of linear dissipation these
can be obtained in the manner described in Ref.
5. One begins with the exact partition function of
the symmetric double well and evaluates it by
tunneling paths which move between the two wells.
The resulting partition function is identical to
that of the two-level system, te~~n by t«~, pro-
vided the tunneling matrix element is renormal-
ized to & =&, exp[- ~(2p )'/hR], where &, is the
matrix element in the absence of dissipation, and
the cutoff , of the environment is given by

2vu =[1/(RC) + 2&~V/p C]" —1/RC

where

I I

FIG. l. Asymmetric double-well potential. For a
typical set of parameters refer to the text.
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In the weak damping limit , is equal to the
small oscillation frequency 0 in the well and in
the strong damping limit it is proportional to
cu, 'RC. For small asymmetry 2& (which is a
tunable parameter) these adjustments are com-
pletely sufficient. For other models of the dissi-
pation, the effective parameters can be obtained
in an analogous fashion. The additional time-de-
pendent term in the Hamiltonian is given by

DH =(p /L)5y„, cos(&ut)o, .
We now calculate the transition rate using Fer-

mi's golden rule and evaluate the expression by
expanding the wave functions in perturbation the-
ory in powers of &/2c. The calculation proceeds
by exactly diagonalizing H with & set equal to

zero, and then calculating the energy shifts and
wave functions in perturbation theory in &. Fi-
nally the thermally averaged transition rate is
calculated by averaging over the initial states of
the environment and summing over the final
states subject to an energy-conserving (for the
complete system) 5 function. The transition rate
can be expressed as

The expression for g(~) is given by

dt
exp[it ((u —2» /h) X(t), —

where X(t) is given by

2p J(d
X(t) = d&u, ((1-e ' ')[1+N(cu)]+ N(~)(1-e'"')j.

0

The boson occupation factor N(~) =(e " —1) '. So far the results are quite general and no assumptions
regarding J(&u) have been made. We shall now present the results for the case J(~)- ~/R as cu-0 and
then discuss the results for other possible forms of the spectral density.

At T =0, g(+) is given by the expression

fi~, ' 2e. -5&
g(~) =[~~, i"(~)] '

&
'2 exp

@
e(h~-2e),

C

where o.'=(2p )'/hR, 9 is the step function, and I'(&) is the gamma function. Thus the transition rate
at the threshold diverges as a power law if &(1 or vanishes as a power law if »1. The dimension-
less parameter & is precisely the one which determines whether the ground state exhibits broken sym-
metry or not in Ref. 5. If we believe that the model of the harmonic-oscillator heat bath is reasonable
for the purpose of calculating the transition rate at finite temperatures (or at least for low tempera-
tures), it is not difficult to calculate an expression for g(~) at finite temperatures as well:

1
R dt ii( ~ 2&lb&

CO )Tt /eg

~h (I + in, i ) sinh(v i/ill) )
To obtain the threshold behavior at finite temper-
atures, the integrand can be approximated by its
large-t limit and one obtains

(X1TA Q)~ 2trk' PT 2

For values of tu —2~, the behavior of g(&) is in-
sensitive to any details of the high-frequency be-
havior of J(tu); it depends only on the magnitude
of the cutoff frequency, , . It is always sympto-
matic of a problem involving an infrared diver-
gence that all scales up to a high-frequency cut-
off contribute. At present, it is not entirely clear
that in all physically interesting cases the low-
frequency behavior of J(&u) is well represented
by J(w)- ~/R. In fact, it probably is not a. good
representation of an oxide- layer junction. ' Al-
though in this case the spectral dependence of

J(~) can be quite different, the basic phenomena
of photoinduced transitions are unaffected. For
example, so long as J(~) vanishes for small &u

faster than &u' with v) 1, g(&u) wil. l consist of a
zero-phonon line at su = 2~/h and a multiphonon
background.

We now turn to experimental implications of
our results for the transition rate. In order that
the truncation to a two-level problem be justified
it is necessary that the barrier heights Y«(L
standing for the left well and R for the right) be
considerably larger than h~« /2, where h&1. &

is the spacing between the energy levels in the
respective wells, and that AL, & be large com-
pared to 2&. For the perturbation theory in & to
be valid we must also have 2&»&. Although the
calculations are difficult (though not unmanage-
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able) to perform for a situation in which the
truncation to two levels is not justified, the physi-
cal effect, at least in a qualitative sense, surely
exists regardless. In any case the parameter
space is sufficiently large so that the above con-
ditions can be satisfied in a number of experimen-
tal situations. Finally, the transition rate at
threshold is nonzero only for & & 1. For a typical
value of p =0.3+„&& 1 when R is greater than
R, -2323 Q.

To be more specific, let us calculate the tran-
sition rate for a possible set of parameters:
n=l, P =2.0, C =10 '4 F, I, =10 ' A, I. =6.6
&&10 ' H, and p, „,' =(2iz+1)p, /2+0. 025', /2zz.

(Of course, 0„,'i can be varied to obtain the
desired value of 2c.) For these parameters we
estimate the following: h1. ~ -3.8 K, VL, =9.5 K,
t/~ =10.6 K, 2& =1.1 K, & —0.4~10 K, and p
-0.3&,. If we a,ssume that P ~P„- 10 'P, ', such
that the amplitude of the oscillating magnetic
field is indeed very small, it is easy to see that
the transition rate is of the order of 10"Hz. An

important point to note is that it is not necessary
that the experimental temperature, T, be small
compared to &, which is tiny, but only that T

2

Finally, we should emphasize that this set of

parameters was chosen to demonstrate experi-
mental feasibility. However, the parameter
space is large and no attempt was made to find
experimentally optimal parameter s.

Unlike the case of atomic spectroscopy, where
one can take advantage of a large ensemble of

atoms, the power absorbed from the ac field by
a single SQUID is very small. The signature of

the transition is probably to be found in the actual
change of the total flux through the loop. Since
this is a macroscopic quantity, it is measurable.
Finally, we note that if the system is prepared in
the upper well, it is possible for it to decay to

the lower well via the emission of a photon. This
transition can either be induced, by an ac field
with frequency ~ & 2&/h, or proceed via spontane-
ous emission of a photon. The spontaneous emis-
sion rate can be derived from an Einstein rela-
tion. At temperature very small compared to 2&,

V =VO
2f

d(u — g((u + 2~/@)c
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where vo =~(8p„SQ&/I.hc) (&u, /lzc), So is the area,
of the SQUID, and in the second line we have
evaluated the integral for the RSJ model. Using
the same set of parameters discussed previously,
with 0 —10 ' cm', we find &0
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