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Proof of the Stability of Highly Negative Ious in the Absence of the Pauli Principle
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It is well known that ionized atoms cannot be both very negative and stable. The maxi-
mum negative ionization is only one or two electrons, even for the largest atoms. The
reason for this phenomenon is examined critically and it is shown that electrostatic con-
siderations and the uncertainty principle cannot account for it. The exclusion principle
plays a crucial role. This is shown by proving that when Fermi statistics is ignored,
then the degree of negative ionization is at least of order z, the nuclear charge, when g
is large.

PACS numbers: 31.10.+ z, 03.65.6e

One of the interesting and important facts about
atoms is that they cannot be very negatively ion-
ized (in a stable state, as distinguished from
metastable state). For a nucleus of charge z, l.et
N, (z) denote the maximum number of el.ectrons
that can be bound to this nucleus (in vacuo, not
in water or other matter) ~ Experiments indicate
that N, (z) -z is one, or possibly two, as z varies
over the periodic tab1.e. It is often said that this
striking fact, which begs for an explanation, is
a consequence of electrostatics; namely, if an
atom has a net negative charge then an additional
electron will not bind because the electron can
l.ower its energy by escaping to infinity. The
purpose of this note is to examine this simple,
but important physical problem in a critical way
and to show that the correct explanation does not
lie with e1.ectrostatics alone —the Pauli exclusion
principLe plays a central role in the correct ex
planation. We are not able to offer an explanation
of the phenomenon, but we thought it worthwhile
at least to expose the fal1,acy in the "simp1.e elec-
trostatic" explanation and thereby show that the
phenomenon is really a deep consequence of quan-
tum mechanics.

To prove that the Pauli principle is essential.
we shal1. consider an atom in which the electrons
are spinless bosons. (Since the ground state of
a many-body system is nodel. ess, it is automat-
ical.ly symmetric; therefore "bosons" and "ignor-
ing statistics" are synonymous. ) We shal. l. prove
that in this model. , N, (z)-z ~yz when z is large,
and where y & 0 is some fixed constant. We do not
know the numerical value of y, except that 0&y
& 1. It can be found by solving an equation [ name-
ly (11) with p, =0] on a computer, if there is suffi-

cient interest in doing so. The exact numerical
va1ue of y is not as important as the fact that
"bosonic" atoms would not obey the N, (z) -z= 1
rule for sufficiently large ~. Just how large ~
has to be in order to vio1.ate the ru1.e substantial. -
ly, we do not know. Equation (ll) has to be
solved to answer the question.

One can adopt different points of view about
this. It is possible that the rul. e is not really a
rule at al. l for fermions, and that N, (z) —z grows
at 1.east as fast as z for l.arge z. In this case the
fact that N, (z) —z = 1 within the periodic table is
fortuitous, and in reality bosons and fermions
are qualitatively similar as far as the phenom-
enon goes. Another possibil. ity is that N, (z)/z
—1-0 as z -~ [thereby allowing the possibility
that N, (z) —z = z~', for example], in which case
the Pau1. i principle is crucial. We, of course,
do not know which point of view will ultimately
prevail. It is to be hoped that if it is the second
one then someone will find a simple, but rigorous
explanation. In any case, the phenomenon shoul. d

not be left merely as a numerical, statement
about the periodic tabl. e but should be understood
on a deeper level.

While we use the nonrelativistic Schroedinger
equation and we regard the nucleus as fixed, it
will be clear, at least intuitively, that our con-
ct.usions are not limited by these approximations.
The lack of the Pauli principle is, however,
crucia1. .

Before turning to the mathematical proof, let
us consider the problem from a heuristic view-
point. Suppose N el.ectrons are bound to the
nucleus. With negl. ect of many-body effects, the
effective potential. that an (V+ l)th electron feels
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h, ft- —m a+y (x), (2)

where rn is the el.ectron mass and h'=2.
As X increases from zero, y~ increases in

some average sense. When N &z, y~(x) is posi-
tive for l.arge I x I [by Newton's theorem, q z(x)
= (N —z)/Ixl for large I xl ]. However, y~(x) is
still very l.arge and negative for x near zero,
namely, -z/lxI. The uncertainty principle is
crucial. here; it prevents p(x) from being a delta,
function and thereby screening the nucleus for
small I xI. Thus, even if N & z, h, »f might have
a genuine bound state and the (N+ l)th electron
might be bound. Eventual. l.y, of course, the
region of negative q ~

wil. l. be too small and bind-
ing will cease. Implicit in this discussion is the
fact that the (N+ 1)th electron is al. lowed to go
into any available bound state of h, «. In other
words, the argument works if statistics is
ignored, which is the same thing as saying that
we are deal. ing with bosons. If, on the other
hand, the el.ectrons are fermions then, for bind-
ing, h, && must have something l.ike N+1 bound
states in order that the (N+1)th electron can go
into an orbital that is orthogonal to the previous-
ly occupied orbitals. It is a remarkable fact
about Fermi statistics that the (N+ 1)th bound
state of h, f» disappears when N = z, if the N, (z)
—x=1 rule is obeyed.

The above argument is not compl. etely convinc-
ing, even on the heuristic level, because it is
not obvious that 8 ff indeed has a bound state
when N = (1+y)z.

A proper proof, starting from the correct
Schroedinger equation, and without any approxi-
mations, will. now be given. I et

H(N) = Q [-m 'b, , + V(x, )]+
1 —i &j —N

Ix-x
I

be the Hamiltonian for N bosonic electrons [V(x)
=-z/I xl]. Let E(N) be the ground-state energy

is approximatel. y

W, (x)=&(x)+fix -yl '»(y)d'X, (1)

where V(x) = —z/I xl, and units in which the elec-
tron charge is unity are used. p(x) is the density
of the N electrons, f p = N. The eff ective Hamil-
tonian for the (N+ l)th electron is approximately

of H(N). We shal. l. find two bounding functions,
E, (N), with E (N) &E(N) &E,(N) and

E, (N) = -mz'e(N/z),

E (N) = rn-z'[e(N/z)x/2+bz-3/~ /s]s

(4a)

(4b)

(5)E (N)=E.(zt, )

(which means that N is not necessarily an inte-
ger), then the energy can be lowered by adding
some number of electrons because E(N) &E (N)
&E (N) =E, (zt, ) =E„([zt,]) -E([zt, ]). Here,
[x] denotes the smal. l.est integer &x. [Note that
Eq. (5) has a unique solution; E (N) is monotone
in N since e(N/z) is monotone in N, ) In other
wor ds

N, (z) &[N]. (6)

As z -~, N-z(1+y) because (5) reads (withN/
z=t)

e(t )"+bz '"t"=e(t-)"
C

Since the solution to Eq. (7) satisfies t& t, & 2 and
since e(t) is continuous, we have that t-t, as z

Thus, our main point is proved, namely,
asymptotically

N, (z) —z &yz, large z. (8)

An uPPe~ bound for N, (z) was first given by
Buskai in the form N, (z) & (const)z' for bosons. '
Sigal' proved for fermions that N, (z) &cz for z
sufficiently large, with c & 2 being some constant.
For fermions Buskai' proved that N, (z) &(const)

&& z . Sigal. improved his result for fermions
to N, (z) &o(z)z, with n(z) &12 and a(z)-2 as z

Now we turn to the proof of Eq. (4).
Upper bound fo~ E(N). We take a pr—oduct trial

function g=g", ,f (x,. ), with ff'=1 and with f (x)
real and nonnegative, and use the variational.
principle:

Here, b =0.86 and e(t) is a. monotone nondecreas-
ing, concave function (e & 0, e & 0), defined for
all real t & 0, with e (0) = 0. E, (N) is essentially
the Hartree energy. The cruciat point about e(t )
is that it is st ictly increasirg in t up to some
t, =1+ y and 0 & y & 1. We do not know the nu-
merical value of y, but that is unimportant. [It
can be found by solving Eq. (11), as expl. ained
below. ] From Eq. (4) we see that if N&N; where

E(N) =(eIHIN) Ie) -. XE~ 'I vs(x)~'I'+«x)» (x»d'~+ '.ff» (x)» (y-)l x Yl 'd'«'-y= I(»), -
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where p(x)= Nf (x)'. [We could insert a. factor
(N-1)/N before the last integral, but choose not
to do so because we want L(p) to be independent
of N. ] Next we define

E, (N) =i~(L(p)l fp=N, p(X) o oj .

Equation (10) means that we try to minimize L(p)
under the stated conditions. The minimum may
not be achieved by any p (it is achieved if and
only if ¹1+yas stated below), but in any case
E+ cannot exceed the "greatest lower bound" or
"infimum" of L(p). The problem posed by Eq.
(10) is a special case of the generalized Thomas-
Fermi-von Weizsaecker problem analyzed ear-
lier." In our case, by the simple scaling p(x)
—m'z'p(mzx) the problem ean be reduced to the
case in which m=1, z =1, and fp=N/z. Equa-
tion (4a) is thus seen to hold. Moreover, the m
dependence of e is e(N/z, m)=me(N/z, m =1) as
in Eq. (4a). (Incidental. ly, this scaling shows
that the radius of bosonic atoms shrinks as z ',
whereas it shrinks as z '~' for fermions. ) There
is a minimizing p for L(p) (and it is unique) if
and only if N/z & t, for some definite number t,
& 1~ (Note that t, is independent of m. ) This p

Let

F(g)=(glH(N)l |t) &right side of (4b). (12)

satisf ies

[-m 'a+p p(x)]p(x)~'= —pp(x)"'

with p ~ 0, and p = 0 when V = t, z. The proof that
t, & 1 is given in Ref. 5, lemma 13, and .Ref. 6,
theorem 7.16 (note: in these proofs take p =~3

and y =0). The proof that t, &2 is given in Ref. 6,
theorem 7.23. [The reason that t, & 1 is that when
N= z then y~ (x) & 0 and one can prove that this
potential has a bound state; thus p cannot be
zero. To prove that t, &2, set p. =0, multiply Eq.
(11) by I xl p(x)'~' and integrate. One can show,
by partial integration, that / I

xl p(x)"'Sp(x)'"
& 0. Obviously, f V(x)lxl p(x) =-zN. Finally, I

-= fflxlp(@p(y)lx-yl '=-', ffp(x)p(y)lx-yl '(lxl
+lyl) H«(lxl+I yl )lx-yl '& 1, so thatIo-N'/
2. Since I-zN, ¹ 2z.] That e(t ) is concave
(and strictly concave when t & t, ) is a consequence
« th«act that when fp is increased the addition-
al density can be placed, if need be, at infinity
where its energy contribution is zero (see Refs.
5 and 6).

Lo~er bound for E(N).—Let ((x„.. . , x~) be
any normalized function. We want to show that

N

pg (x) = 5~ f I ((xg, ~ ~ . , x~ g, x~x;+g~. . . , X~)l d xg' ' 'd x~ gd xq~~' ' 'd x~
i =1

(13)

be the single-particle density associated with (; fp& =N. We shall use several known inequalities.
The first is the kinetic energy inequality of Hoffmann-Ostenhof (see also Ref. 8 for a further discus-
sion of kinetic energy inequalities):

f I
vp, (x)'&'I'd'x. (14)

This follows by taking the gradient in (13) and then using the Schwarz inequality. The second is the
"exchange and correlation" inequality' ":

1&& &q &N
lx;-x, l

'I q) --' ffp&(x)p&(y)l x-yl 'd'xd'y-(168) fp (x) "d'x. (15)

Inserting Eqs. (14) and (15) in (12) we have, for any g,

(16)F(q) oL(pq) —(1.68) fpq (x)"'d'x.
To bound the right side of (16) from below, let us first explicitly denote the m dependence of L(p) by
L(p, m). Choose e &0 and let m, = (I+a)m. Then Eq. (16) reads

F(q) &L(p~, m, )+&(pt„m, ),
I'(p~, m, )=em, ' f I ~p, (x)"'I'd'x —(168)fp~(x)"'d'x.

We have already seen that [see Eq. (10) and the following remark about scaling]

L(p„m, ).- (m, /m )E, (N) = (1+e)~, (N) .

(17)

(18)
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To bound P, we use the Sobol.ev inequality"'

J l&~(x) I' d'~ -3(~/2)'"&Jlr(x) I'd'x)'"

for any g. Thus

(20)

(22)

(23)

(P(p m ) o 3(m/2)'i'~m, '(Jpq(x)'d'x)' ' —(1.68) Jp~(x)''d'x

By Hoeider's inequality, fp ~3~X(fpj'~6 with X=(fp3)'~6. Inserting this in (21), and then minimizing
the right side with respect to the unknown X, we have

~(p, , m, ) o - b'm, N'"/~,

b —(1 68)2 &~33 &~2~ 2&3 —0 36

Inserting Eqs. (19) and (22) in (17) we have, for any e & 0, and any normalized (,
(ql H'(N)l q) o (1+e)E, (N) —(1+1/f) mb'N'~'. (24)

Maximizing this with respect to e yields Eq. (4b).
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