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Giant Resonances as Oscillations of Two Elastically Coupled Fluids
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The classical equations of motion for elastically coupled, elastic proton and neutron
fluids allow two T = 0 and two T = 1 propagating modes. The Lame coefficients evaluated
empirically are seen to be very different from each other, yielding the large Poisson
ratio of 0.485 for nuclear matter and the T = 0 and T = 1 giant-resonance energies, many
of which have been seen experimentaQy.

PACS numbers: 24.30.Cz, 21.10.8e, 21.60.Ev

In medium and heavy nuclei the collective be-
havior at an excitation energy of a few megaelec-
tronvolts and above can be characterized as that
of a viscoelastic f.uid. This was realized when
the giant resonances were interpreted as the
elastic vibrations'2 of the nuclear fluid. If the
angular frequency ~ of the oscillations and the
relaxation time ~ of the stresses in the nucleus
(which is related to the widths of giant resonances)
fulfill ~v «I, the medium behaves like a viscous
fluid. If ~7.» I, the medium is endowed with an

!
elastic response to both normal and shear stress-

1 4 ~ 1»p" t "t + »n, ,- &p "i,"i,. &n i& i, ——,~p

es, and can be treated like an elastic solid. One
such model dealing with the latter domain was
explicitly constructed by Wong and Azziz. ' How-
ever, the resonance energies of most of the
isoscalar multipole states were found to lie
above the corresponding isovector states. ' This
can be remedied by altering the boundary condi-
tions for the isovector case. '

Two fluids can be coupled dissipatively through
their velocities. In the elastic regime we can
think of two elastic fluids occupying the same
volume and coupled elastically. A nonrelativistic
Lagrangian density for this system is

where pp and p„are the proton and neutron densities, respectively, and u, and v,. are the displace-
ment fields of elements of the fluids relative to Cartesian axes. Ap, A.„, /L(p, and p„are the coeffi-
cients that couple the elements of the fluids to the medium, related to the Lame coefficients A. and p,

by

pn I"

Pp +Pn Pp +Pn
p, A. p„A.

p
Pp +Pn Pp +Pn

and p,, are the coefficients that elastically couple the elements of the fluids to each other. Summa-
tion of all repeated indices is assumed. u, , and v;, are the symmetrized Cartesian strain tensors
for the proton and the neutron fluids, respectively: u, , = —,'(~, u, +~, u, ) and v, , = —,'(~, v, +~,. v, ). Insert-
ing this Lagrangian in the Euler-Lagrange equations of motion for continuous systems we obtain the
following coupled system of equations of motion:

ppu)= s~ s~[(A~+A~+ JJp+/J~)u~ —(A~+ JJ~)'v~]+8~ s~! (/J~+ p~)u —jJ~v. J q

p„v. = s s [(A.„+A.i+ p.„+/J.i)v —(A.i+ p.i)u J+s s!(p,„+pi)v —/Jiu

These are only valid in Cartesian coordinates and aside from the coupling terms (with negative sign)
are equivalent to the Lamh equation. If we take Vx (u+v), Wx (u- v), V ~ (u+v), and V ~ (u- v) as the
normal coordinates and assume propagating solutions of the form expik(x —ct), the equations of motion
give the speeds of isoscalar and isovector longitudinal waves as

doe+[(doe)'-4p p„fI'™I'
2PpPn

taking minus and plus signs, respectively, with

d= p~(2 p.„+A.„+2p., +A.,), e = p„(2 @~+Ap+2 p., +X,), f =(2 p~+A~)(2 p.„+g„)+(2p.,+y,)(2 p~+A~+2 p.„+A„).
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The speeds of isoscalar and isovector transverse
waves are

a +b+[(a+ h)* —4p, p„gj'i*I'i*
2Pn Pp

where

&=Pp(P + Py) b =0 (Pp + uy)

g= /J, P P,„+P,I P.P + /J, ~ P,~,
Just like in normal nuclear matter, four types of
waves can propagate. This is due to the shear
elasticity instead of the spin degree of freedom.
Also, the isovector modes are built on top of
the corresponding isoscalar modes and will al-
ways be higher in energy.

The equations of motion can be solved using
the method of Lamb, 6 employing the boundary
condition that the total stress must vanish at the
nuclear surface. This leads to the wave eigen-

vectors for the electric and magnetic multipoles.
The magnetic wave eigenvectors are independent
of the ratio of X to p.. The electric wave eigen-
vectors are sensitive to this ratio, more so in
the case of smaller multipoles and crucially in
the case of the electric monopole. The bulk
modulus k can be deduced from the incompress-
ibility of nuclear matter K„by 0 =n~„/9. If
we take K to be 200 MeV and a density of 0.16
nucleons fm ', we get k-3.56 MeV fm '. At
this point two assertions are made: (I) Because
of charge independence, p, ——,

'
p, and A. y g A, .

(2) Experimentally, ' the isovector magnetic di-
pole resonance lies at an energy -45' ' ' MeV.
Since the magnetic modes are unaffected by sur-
face tension or the Coulomb energy, we can now
empirically evaluate the Lame coefficients: A.

=3.482 MeV fm ' and p. =0.110 MeV fm '. Also,
the speeds of the two isoscalar modes of propa-
gation in the elastic regime can be seen inFig. 1
to be unaffected by the ratio of proton to neutron
densities and very slightly affected in the iso-
vector cases.

The energies of the isoscalar and isovector IVl1,

M2, EO, EI, E2, and E3 resonances were cal-
culated with the assumption that R = 1.2A. '~' and
some are shown in Tables I and II. The num-
bers on the left indicate the harmonics, where
one can see that the largest wave eigenvectors
occur for the EO and M1 modes. Only with these
widely differing values of A. and p. can the ex-
perimental energies of the T = 1 MI and T = 0 EO
be made compatible. These values yield a very
large Poisson ratio 0 for nuclear matter: 0.485
(an incompressible medium has o = s). In this
model the surface tension, Coulomb energy, and
effective mass were not taken into account, yet
many of these resonances have been seen experi-

TABLE I. Some isoscalar multipole energies in
A 3 MeV of the lower harmonics lying above 40A
Mev.

TABLE II. Some isovector multipole energies in
A. ~ MeV with a density ratio of 1.5 lying above 4' ~~3

MeV.

M2 E0 E1 E0

40
55
69
83

47
61
76
90

104

80
162
243 48

62
76
90

104
115

68
83
97

ill

46

75
89

103
117

45
71
96

121
146
171

141
284 58

84
109
134
158

43
69
95

120
145
170
195

55
80

106
131
156
181
206
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mentally. This is partly because, as is pointed
out in Ref. 3, the surface tension and Coulomb
energy have a very small effect on the electric
multipoles. It would be interesting to obtain
from microscopic calculations of the sort per-
formed in Refs. 3 and 8 the present coupled sys-
tem of equations of motion leading to a large
Poisson ratio for nuclear matter.
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