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The general scale-invariant Lagrangian, —% [d4x(-g)'/?[a cPN¢ g T BRY, with af
=0, is considered. Although this theory admits linearized solutions with negative energy,
it is shown that all exact solutions representing isolated systems have precisely zero
energy. This result also holds in the presence of arbitrary matter. It can be understood
as resulting from a confinement of energy. The implications of this result for quantum

gravity are discussed.
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The conformally invariant Weyl action—the
integral of the square of the Weyl tensor—is an
attractive candidate for the fundamental action
of quantum gravity., Quantum conformal gravity
is probably renormalizable! and asymptotically
free.? Since dynamical breakdown of scale in-
variance occurs generically in quantum field
theory, we expect that, at long distances, "the
conformal invariance will be broken, leaving
general coordinate invariance. The resultant
theory will be described by an effective action
of which the leading term at large distances is
the Hilbert action,® with an in-principle calcula-
ble effective Newtonian constant.* Because of
asymptotic freedom, conformal invariance is re-
stored at short distances.

The principal reason that this theory has not
received general acceptance is because, since it
is a higher derivative theory, the solutions of
the classical theory are expected to have negative
energy and, therefore, exhibit instabilities. In-
deed, there are solutions of the linearized equa-
tions with arbitrarily large negative (or positive)
energies. In the quantum theory, this problem
can be formally cured by quantizing with an in-
definite metric in the Hilbert space.® The result-
ant theory is not unitary unless the perturbation
expansion is modified by use of the Lee-Wick
procedure.’'® However, this solution is con-
trived and its ultimate consistency is unclear.”

In this paper, we show that asymptotically flat
solutions of the classical equations all have zero
energy. The solutions to the linearized equations
with nonzero energy of either sign do not corre-
spond to the limit of a one-parameter family of
exact solutions. As a result, one cannot draw
conclusions from the linearized theory concern-
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ing the stability of the full quantum theory.

It should be emphasized that in no sense does
the vanishing of the energy imply that the theory
is trivial; the solutions include all solutions of
the vacuum Einstein equations.

The physical basis of our result is simple: Be-
cause the action is fourth order, the (appropri-
ately defined) classical potential grows linearly
with distance. Another theory with a linear po-
tential is quantum Yang-Mills theory. In that
theory, we know® that only systems with zero
total color have finite energy; i.e. color is con-
fined. If the total color is not zero, there is
necessarily a color field extending to infinity
with divergent energy. In the case of scale-

. invariant gravity, only systems with zero total

energy have finite energy. Thus we may say that
energy is confined.®

If we break scale invariance by adding an Ein-
stein term, the dynamics at large distances will
be dominated by that term. The long-range po-
tential will be Coulombic rather than linear, and
hence no confinement is expected and the energy
can probably have either sign.

The theorem we will prove applies to the gen-
eral scale-invariant gravitational action,

w=-1i)d% (-9 {ac"" ¢, +BR*. (1)

The expression for the energy in this theory is
different from that in general relativity. To see
this, we briefly review the canonical formula-
tion of scale-invariant gravity®'° which is based
on the systematic treatment of higher derivative
theories given by Ostrogradsky.**

Fix a spacelike surface, Z, in a space-time,
(M, g,,), which is asymptotically flat (in a sense
to be made precise shortly). The canonical varia-

© 1983 The American Physical Society



VOLUME 50, NUMBER 22

PHYSICAL REVIEW LETTERS

30 May 1983

bles are the three-metric, g;;, a symmetric
tensor density of weight one, @/, and their con-
jugate momenta, p*’ and P;,;. The variables
Q', P;, correspond to the extra degrees of free-
dom in higher-derivative gravity. The relation
between @7, P;;, and the space-time curvature
and extrinsic curvature, K;;, of Z is given by

Q :gl/z{zacoioj +,‘3g“R} , (2)
and

P,,=2K,,. (3)

i

C=1Lipiip,, —agl/zc"“kc",.jk _QTijQT“/zagl/z -

and

C,=3Q"D,P;; -D;(P;,Q")+D;p,* =0, (5)

where D;, *R;;, and ®R are the covariant deriva-
tive, Ricci tensor, and scalar curvature of g;;;
P is the trace of P;;, and C°;,, can be expressed
in terms of the spatial derivatives of P;;."

The generators of diffeomorphisms are given
by volume integrals of the constraints up to sur-
face terms. These surface terms are fixed by
the requirement that the generators be differen-
tiable functions®® on the phase space, I'={g, p,

Q, P}. If the functions were not differentiable,
then of course they would not generate any trans-
formations. These generating functions are

Hy=[ N)x)C(x)d* + | ND, Q" dS,; (6)
and
Pyr= ka(x)Ck(x)zf’x - ka{Pki"Q“ij} as;,
(M

where N, N* are any (asymptotically well behaved)
function and vector field on . In addition, dif-
ferentiability requires some weak falloff condi-
tions on the canonical variables, These are not
relevant to our proof and will not be presented.

If N and N* approach constant nonzero values
asymptotically, then H, and P, generate asymp-
totic time and space translations. They are
therefore identified with the Hamiltonian and
momentum. The total energy £, is simply the
value of the Hamiltonian when the constraints are |

Notice that, up to a factor, the trace-free part,
QT", of Q' is the “electric” part of the Weyl
tensor and that the trace of @ is just the scalar
curvature. The formula for the momentum, p?/,
conjugate to g;; involves the third time deriva-
tive of the metric and is more complicated.®
Since its explicit form will not be required, we
omit it,

Since this theory has a gauge invariance (the
diffeomorphism group), there are constraints.
As in general relativity, these are the time-time
and time-space components of the classical field
equations.'? In terms of the canonical variables,
these constraints are

Q%/368g Y2 - 5QV P, P —3Q(PV P,, - P?)

+3°RQ-°R,;,Q" -D,;D,;Q" =0, (4)
lsatisfied (and N approaches 1 asymptotically),
E=[D,;Q"ds;. (8)
Similarly, the momentum is given by
Py==J{bs' - Q" P,}ds,. (9)

We can now make more precise the sense in
which the space-time is asymptotically flat, We
wish to consider only those solutions with finite
energy and momentum, We therefore require'
that

gi;=0;; +0(r™), pH=0(r7?),
Q” = 0(7’_1), P;= o(r~Y) ,
and that the spatial derivatives of these fields
fall off faster by one power of »~!, This com-
pletes our review of the canonical formulation
of the theory.

Notice that the expressions for energy and
momentum in this theory are very different from
those of general relativity. For example, the
energy is given by the »~! part of @ but, by (2),
this corresponds to the »™* of the curvature., Re-
call that the Arnowitt-Deser-Misner energy for
asymptotically flat solutions in general relativity
is given by the »~! part of the metric, and the
curvature typically drops off like »73,

For what follows, it is convenient to reexpress
the total energy, E, in terms of a volume inte-
gral over ©. By Gauss’s law and (8), we have

(10)

E= J[ %pijpij _ag1/zcoijkco“k - QT QT“/zagl/z —Q2/36;3g1/2

E=)D;D;Q"d%. (11)
With use of the constraint (4), this becomes
+°R;;Q" =*RQ/2-3Q" P, P -3QPV P, - P)]. (12)
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Since the expression for energy in this theory is
probably unfamiliar, we now briefly consider the
linearized theory. The fields, g;;=6,;, @;;=0
=p;;=0=P;;, clearly satisfy the constraints and
represent a plane in flat space-time., When we
linearize about this solution, the constraint equa-
tions become

3,8,Q=0 (13)
and
9,p¥=0, (14)

The first-order changes in g;; and P;; are not
constrained. Let @7 =0 and p*’ be an arbitrary
solution to (14) satisfying the boundary condi-
tions (10). The energy for this solution evaluated
to quadratic order is easily obtained from (12):

E=[{ip" P, - ag"Coi*CO, ) d% . (15)
Recall that C°;;, involves only spatial derivatives
of P;;. Since P;; is arbitrary, we can choose
P;;=rp;;. If we choose A sufficiently small,

then the second term is negligible compared to
the first, in that case,

E=x]plp,; d, (16)

which clearly can have either sign depending on
the sign of A. Thus, there exist linearized solu-
tions to the constraint equations with either posi-
tive or negative energy.

We now state and prove our main theorem.,

Theorem.—If (g, p, @, P) satisfy the constraint
(4) with @p =0, and the boundary conditions (10),
then E =0,

The proof is remarkably simple. Consider Eq.
(12). From the boundary conditions, (10), we
see that all terms on the right-hand side fall off
faster than »~2, except for the two @? term. Thus,

E:_J‘{QTiJQTij/zagl/Z_‘_ 2/366g1/2+h}d3x,
(17

where & vanishes at least as fast as »™%, Now,

if E+ 0, we see from (8) that @*/ must have a
nonzero »~! contribution, and hence the integral
of Q¥ Q,; diverges. Since o and B have the same
sign by assumption, the first two terms in (17)
cannot cancel. Since the boundary conditions re-
quire E to be finite, we obtain a contradiction;
hence, £=0, Q.E.D.

It follows immediately from this theorem that
the linearized solutions with nonzero energy can-
not correspond to a one-parameter family of
exact solutions, In fact, one cannot even extend
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these linearized solutions to second order.
second-order change in @/ will have an »~
term which will cause the energy to diverge.

The above theorem is the analog of the positive-
energy theorem in general relativity.'® As in
that case, the theorem remains valid in the pres-
ence of matter. However, since the proof only
requires that the constraint equation hold asymp-
totically, it is sufficient here that the energy
density of the matter fields fall off faster than
7~2; one does not need to impose the dominant
energy condition.

We now discuss the implications of our results
for quantum gravity. The hope is that this classi-
cal zero-energy theorem has a quantum analog
that will cure the instabilities in quantum per-
turbation theory. The full quantum theory will
be governed by an effective action. At long dis-
tances, the effective energy will be the Arnowitt-
Deser-Misner energy, not that defined in (11).
Therefore, in order to investigate the question
of instabilities, one must understand the transi-
tion from short- to long-distance behavior. This
is, of course, a difficult dynamical question.
What we have shown here is that previous anal-
yses indicating instabilities of the quantum theory
were incorrect because they assumed lineariza-
tion stability. This issue therefore deserves a
thorough reinvestigation.

Since the action is positive definite for «, =0,
it may be possible to define the theory by means
of a Euclidean formulation., In constrast to the
real-time, Minkowskian, formulation with zero
energy for all solutions, the Euclidean functional
integral formulation may be simple because there
is only one zero-action solution: flat R®* How-
ever, the functional integral does have other
asymptotically Euclidean extrema.'® These in-
stantons are a close analog of the familiar Yang-
Mills instantons. Presumably, an adaptation of
the techniques developed for the Yang-Mills case
can be used here. The instantons may be rele-
vant to the problem of describing the breakdown
of scale invariance.'’

Finally, we comment on the connection between
this result and the existence of conformal super-
gravity.'® The fact that the Hamiltonian is for-
mally the square of the supercharge suggests
that the energy should be nonnegative'®; that re-
sult, plus positivity of the Hilbert space metric,
implies that positive -energy states must exist
unless the supercharge vanishes identically.?®
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