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Extended objects, in the form of strings, soli-
tons, kinks, monopoles, etc. ,

' seem to play an
ever increasing role in quantum field theory and
elementary-particle physics. The very existence
of extended objects makes it conceivable, on
physical grounds, that their state space can be
organized according to a Regge-like trajectory
structure, where states of increasing value for
the angular momentum are present, possibly
with a highly unstable nature.

On the basis of this motivation we have analyzed
the very simple case of the nonrelativistic rigid
body, with the purpose of isolating some possible
candidates of configuration spaces for the de-
scription of the rotational degrees of freedom in
its quantum behavior, including half-integer spin
states, and in relation to the assumed algebra of

physical observabl. es.
Our analysis is a byproduct of the program"

of describing quantum spin in the framework of
the approach to quantization provided by stochas-
tic mechanics. 4

In the classical case a nonrel. ativistic rigid
body has configuration space given by SO(3). We

assume that we have separated the center-of-
mass motion described in''. We cal. l. g ESO(3)
the configuration of the system.

We assume a Lagrangian of the type'

L(g, g) = ' I (g 'g, g '—g),
where I is a constant having the dimension of
inertial momentum, g 'g W su(2), the Lie alge-
bra of SO(3), and ( ~ ~ ~, ~ ~ ~ ) is a suitable posi-
tive definite scalar product on su(2). For the
sake of simplicity we consider only the case of
a generic cylindric inertial ellipsoid. Since
su(2) is isomorphic to R', by assuming a. sym-
metry around the third axis, we can write, for
t=(t„ t„ t, ) a su(2),

(t, t)=t,'+t, '+~t, , (2)

with 0 - e - 2. The value e =1 corresponds to full
symmetry (the spherical case), while e = 0 is the
degenerate dipole case.

Upon quantization the right choice for configura-
tion space is S, (the three-dimensional surface
of the unit sphere in R4) as the manifold of SU(2),
the universal covering group of the classical con-
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figuration space SO(3). This is particularly clear
when quantization methods are employed where
path integrals play a central role, either in the
Feynman version' or in the stochastic mechanics
version. ' Alternatively, according to the picture
described by Misner, Thorne, and Wheel. er, ' we
may a.ssume that the SO(3) rigid body is connected
to infinity with a fibration of topol. ogical. strings
and add to the configuration space the information
about the topological entanglement of the strings.
This procedure still extends to SU(2) the effective
configuration space (see, for example, Guerra
and Marra').

Then the Hilbert state space is K =L (S„dp),
where d p, is the symmetric normalized measure
on S„corresponding to the invariant Haar meas-
ure on SU(2). On K there exist two representa-
tions of SU(2), coming from left and right multi-
plications, defined by

j SU(2) ~ h - U(h), [&(&)())j(g)= g(& g),
[SU(2) ~ I - V(a), [l'(I)yj(g) =(((gI '),

We call J„J„J,the generators of U(h) and

J„J„J,those of V(h). They satisfy the angular
momentum commutation relations

[J„J,]= iJ„[J„J,] = —iJ, (cyclic),
(4)[J;,J, ]=0.

A very convenient parametrization of SU(2) is
derived from its quotient with respect to the sub-
group U(l). Then the corresponding homogeneous
space is S„ the two-dimensional spherical sur-
face in A'. Assuming spherical coordinates on
S, given by (0, y), 0 ~ 0 - )T, p E U(1), and o.'

+ U(1), we can write the explicit expressions for
the angular momentum operators:

J, =(ff/2i)s„,

J, = (8/i) & +(8/2i) 0 =(h./i) & +J, , (5)

J'= -ri'S, ,

where 4~ is the Laplace-Beltrami operator on
3

S3 given by

~, y=a, y+(1+cos0) '(&,'()'+-,'&„'(() (6)

and A~, is the Laplace-Beltrami operator o»2,
b ~ /=sin '0~e(sin0se(() +sin 00~'g. (7)

Since n ~ U(l) the factor 2 in the expression
of J3 assures the existence of half -integer eigen-

A,

values for J,. Moreover, J', J„J,can be con-
sidered as a complete set of compatible observa-
bles. They can assume the values h'j(j+ 1), Sm,

2I 2 eI 2I 2I

where J', J,' are explicitly given by (5).
The energy eigenvalues are

z(j, m')

=h'j(j +1)/2I +5'(e '- l)m "/2I;

(10)

the corresponding eigenstates are found in the
Peter-Weyl expansion (8). They are degenerate
with respect to external rotations generated by
the J's (as is obvious on physical grounds be-
cause there is no external magnetic field), and
also with respect to internal rotations generated
by J, . If e =1 then we have complete degeneracy
also with respect to internal rotations.

From (8) we see that the model contains in gen-
eral coherent superpositions of al.l possible dif-
ferent spin values. This remark could play some
role in the study of supersymmetric theories.

From (10) and (11) we see that, beyond the (2j
+ 1)-fold degeneracy given by external. rotations,
there is an additional (2j+1)-fold degeneracy due
to internal. rotations in the symmetric case (e = 1),
or an additional twofold degeneracy, connected
with the m'- —rn' symmetry, in the generic
cylindric case, when rn' ~0. In particular there
will be in general four different orthogonal states,
with the same energy, for the spin- —,

' subspace,
corresponding to m =+ —,', m'=~ —,'.

It is interesting to see what kind of mechanism
can be provided, in the framework of this model,
in order to remove unwanted additional degener-
acy and lay down a bridge toward the world of
elementary-particle physics. We consider here
in particular two mechanisms: the reduction of
the observable algebra and the limit to the dipole
case c -0. In order to describe the first let us

Sm '. , with j = 0, 2, 1,. . .; y~ = -j, —j + 1,..., j;
m' = —j, —j + 1,. . ., j. Correspondently each
(I'RK can be decomposed in the Peter-Weyl ex-
pansion

t(d= Z &.."'*(a)N.. "', (8)
PJ gmgm

where R ~'~ form a compl. ete ortnonormal, sys-
tem on S,. Under left and right transformations
(3) the components g

(') transform independently
according to the given irreducible representation

[II(I ) q]...') =P...Il.„-(")(i )y. „., '),
[y(@)(I,],(& ) —g „(() „(~)Ii „,(i )(g)

The Hamiltonian can be written as
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assume e = I and let us remark that the physical
content of the theory is not given by the Hilbert
space of states but more precisely by the states
on the algebra of observables.

Firstly let us consider the maximally coherent
case. I et 8 be the algebra of all bounded ob-
servables on K. Then each gH R', with II glI =1,
will generate a state ~ on 8 defined by

u)(A) = &y, Ay&, (12)

for each A H 8.
As is very well known the state ~ is invariant

under the U(1) gauge group of repha. sing R, P-exp(io. ) P, o. u U(1). In fact only the rays in K
are physically relevant. The states ~ are pure
on 8, i.e., no nontrivial decomposition exists of
the type

(u(A) =Q,p;&u;(A), 0 -p; 1, Q,p, = 1 . (13)

But assume that we are interes. ted in a smaller
algebra of observables 8, and that we consider
the states induced by X on 8 through (12). For
example let 8 be the algebra of bounded observa-
bles invariant under any right transformation
V(h). Then it can be easily shown that 8 is gen-
erated by the &(h)'s, i.e., any element 8 can be
approximated through linear combinations of the
type

A=+, ~,. V(I, ).
Then the states cu induced by R on 8 are defined
by limits of the form

&u(A) = & p, A p) =P; A. ; ( g, U(h; ) p) .
It is enough to consider

~(&(&))= &y, &(&)y&= J y*(a)t(&'ddt(a). (16)

Then by exploiting (8) we have

~ (U(h) )=Q„Tr I g "'R" '(h) P" '],
where g 'I=—(g ~ ''} and the trace is taken in
the (2j +1)-dimensional complex space.

Formula, (17) shows that each state on 8 is a
mixture of states corresponding to each different

j. We see that in this case the gauge group X ex-
tends from the rephasing group to a gigantic U(1)

U(2) Ia ~ ~ 43 U(2j+ 1) ~ ~, i.e. , the state de-
fined by g on 8 is identical to that given by g' if

=Km-0m~- m-m
~(~) —~~ (~) (&)

for any A '' ~ U(2j+1). Moreover the restriction
to 8 gives mixtures of Pauli-type representa-
tions.

In this case no nontrivial superpositions can be

made for different spin states. Each spin state
is described in the frame of a Pauli-like theory.
The single irreducible representations become
incoherent.

Since for each spin state j any complete set of
observables is equivalent to a single operator
with spectrum -j, -j+1, . .. , j, then we can as-
sume the configuration space in this case as
given by T» „(the discrete set with 2j+1 ob-
jects). This picture leads to general path-inte-
gral. representations written in terms of Poisson
jurnp processes on T»„, see for example Ref s.
3 and 8. Both J' and J, become superselected
quantum numbers; the onl. y surviving observable
in the complete set is J, and we may form only
coherent superpositions of its eigenstates.

An intermediate possibility is offered by the
choice of 8 as the algebra of observables invar-
iant under internal rotations around one axis (for
example the third); then 4, becomes a super-
selected quantity with eigenvalue Rm'. States
with different values of m' cannot be coherently
superposed. In each m' sector J', J3 may take
the values j(j+1), j= Im' I, Im'I+1, ~ ~ -, m =-j,

+ ~p ~ Ei ~ 9 jO

We see that each sector is organized in a hier-
archy of states with different j, starting from m'
and increasing by integer values. These systems
represent trajectories with definite lower total
angular momentum m' and only superposition of
integer values (if m' is integer) on half-integer
values (if m' is half-integer) but not both. This
situation has some similarity with the phenomeno-
logical classification of particles in terms of
Regge trajectories.

In this case, for each m' sector, the configura-
tion space reduces to S,. In fact the wave func-
tion y on S, has a trivial dependence on u E U(1)
in the form

~= g(0, y) exp(-2iom') .
The Hamiltonian on L'(S2) is

a = -(5'/2 )Ifz,, 2+(l + ceo)s'( im's ~ --m") ],
(1S)

as can be easily found from (6), taking into ac-
count that ~ = -2im'. Notice that II depends
explicitly on m' if m'g0.

The reader may be surprised by the fact that
L'(S,) can also accommodate states of half-inte-
ger spin values. In fact since &pH U(l) the opera-
tor -i ~ ~ can take only integer values, but it
should be realized that the true angular momen-
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turn in this case is

J, =(8/i) &, —m', (2o)

value of m" we can perform a different energy
renormalization based on a simple shift and the
eigenvalues become simply

as follows from (5). Therefore half-integer val-
ues are allowed if m' is such. For example for
m'= —,

' the spin--,' wave function on 1.'(S,) corre-
sponding to J, =h/2 is

g = [(1+cos0)/2]'~'. (21)

In conclusion we can see that the dipole configu-
ration space S, can also describe half-integer
spin states provided the Hamiltonian (19) is cho-
sen. Notice that in general the term -im'~~ acts
like a kind of external magnetic field directed
along the third axis, but its origin is purely kine-
matical and derives from the elimination of the
U(1) degree of freedom attached to o. u U(l).

Finally let us consider the other degeneracy-
removing mechanism based on taking the dipole
limit e -0 in (10) and (ll). We see that if m'w0
all energy eigenvalues go to infinity depending on
the value of m". From a physical point of view

only energy differences have meaning. There-
fore in each subspace corresponding to a given

(22)

where E 2 is a residual renormalization con-
stant. But now, in the limit e -0, no coherent
superpositions of states with different m" are
possible, because the different renormalizations
make phase differences between the different
m" sectors completely meaningless.

We see that the limiting theory e -0 splits into
incoherent sectors defined by the values of m".
Therefore 4,' becomes a superselected operator.
On the other hand states with opposite values of
m' can be superposed (because they have a com-
mon infinite renormalization). As a result a,

complete set of observables in each sector is
now reduced to O', J» 0, where 0 is the sign of
J„and we have J, =ho~I'~, a&Z, =(-1,1]. In
each sector we have now hierarchies of states
with total angular momentum j = ~m'~, )m'~
+ I

y
~ ~ ~ ~

We see that the operator ~ assumes the form
s„=-io~ m'~. Therefore we can assume S, x Z,
as configuration space; now the Hamiltonian is

H =-(h'/2I)[s, +2(1+cose) '(-i~m'( os~ —I")]+8 (23)

For m'~0 a degeneracy connected to m'- —m'
is still present.

In conclusion, starting from the maximally
coherent configuration space S, =SU(2), we can
arrive at S, if the allowed algebra of observables
is invariant under any internal rotation around
the third axis, or to the configuration space T»„
if the observable algebra is invariant under any
internal rotation. In the dipole case e -0 the
configuration space 8, reduces to S, XZ,. Algebra
restrictions or dipole limits produce incoherent
mixtures of states according to the previous men-
tioned coherence breaking pattern.
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