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Electron or excitation transfer can be enhanced during vibrational relaxation after opti-
cal excitation of a donor. When it occurs after vibrational relaxation with a thermal acti-
vation energy Ez, enhanced transfer during vibrational relaxation is also governed by an
activation energy p& which, however, is smaller than p& or even vanishes. The decre-
ment &z —KH depends on the total energy of vibrations triggered by optical excitation,
and also on their average direction relative to that of the activation barrier for transfer
in the phonon-coordinate space.

PACS numbers: 82.20.Rp, 71.38.+i, 82.30.Fi, 82.50.-m

Much interest has recently been aroused in the
dynamic behavior of a localized electron-phonon
system occurring during vibrational relaxation
(VR) after a pulse excitation. To detect this opti-
cally, we observe the hot luminescence emitted
during VH, which is different from the ordinary
luminescence emitted after VH, that is, for
thermal equilibrium of the excited electronic
state. ' ' For this purpose, however, it is neces-
sary to use a pulse width &t (and an observation
interval) much smaller than the time T„for VR,
which is usually of the order of 1 psec in solids
and liquids. One would need femtosecond laser
techniques now being developed' which might,
however, be premature for such application. Un-
der steady excitation the intensity ratio of hot
luminescence to ordinary luminescence in the
emission spectrum is very small, being of the
order of 7' „/T„whereT, is the radiative lifetime
of the excited electronic state and is at least of
the order of nanoseconds in usual cases. The
main purpose of the present Letter is to point out
that the photoinduced electron or excitation trans-
fer process can be a sensitive probe of the dynam-
ic behavior of the electron-phonon system, since
its rate can be greatly enhanced only during VR
after a pulse excitation. The yield of the enhanced
transfer occurring during VB can be large enough
to be detected also under the condition of &t » ~„.

Excitation transfer occurring after VR is called
ordinary transfer, and its rate is given by the
well-known Forster formula' a,s

where & represents the transfer integral, D(E')
the (ordinary) luminescence spectrum of the (en-
ergy) donor, and & (E ') the absorption spectrum
of the (energy) acceptor, with normalization
JD (E)dE = Q (E)dE = 1. In the case of electron

transfer, D (E') represents the energy spectrum
of the outer-sphere electron of the donor while
A(E') represents the energy spectrum of the un-
occupied level of the acceptor to which the elec-
tron is to be transferred. ' Equation (1) is based
on the golden rule, " where D(E') gives the densi-
ty of initial states at energy &' weighted by the
occupation probability while &(E') gives the densi-
ty of final states for transfer at the same energy.
In the following we use terminology appropriate
to excitation transfer for simplicity.

Now let us assume that the donor is excited by
a photon with energy E at time zero. (In the case
of electron transfer, & should be regarded as the
initial energy of the outer-sphere electron given
at the instant of photoexcitation of the donor. )
The phonon system begins to relax, interacting
with the excitation, and the energy of the excita-
tion begins to change, interacting with phonons.
The distribution function of this energy E' at
time t (& 0) is denoted by D (E', t;E) with normal-
ization JD(E', t;E)dE' =1. Then, using the "gold-
en rule" we can get the transfer rate at time t by'

t (t;E) = (2~X/@)fdE D(E', t;Eg(E ). (2)

Equation (2) may be called the generalized I"ors-
ter formula. In fact, when t is much larger than
the VR time 7„,(2) approaches (1) since D(E';t;
E) approaches D(E'). Therefore, with the excita-
tion-transfer rate of (2) we can detect the time-
resolved emission spectrum of the donor with a
window of the absorption spectrum A(E') of the
acceptor. The resolution of time t is limited by
the inverse of the width of &(E').

Therefore'�(E')

must be sufficiently broad.
When t ~ 7„,where D(E', t;E) represents the hot

luminescence, &(t;E) represents excitation trans-
fer taking place during VR within the excited elec-
tronic state of the donor, which is called hot
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transfer. When t»&„where D(E';t;E) repre-
sents the ordinary luminescence, k(&;E) tends to
the Forster ordinary-transfer rate. [When t is
smaller than the phase correlation time («~,) of
the localized excitation, the Hayleigh and Haman
scattering are emitted. ' ' When D(E'; t;E) in
(2) is replaced for this case, however, (2) repre
sents the direct excitation of the acceptor (or the
direct charge-transfer excitation in the case of
electron transfer) mediated by a virtual excita-
tion of the donor, and so it cannot be regarded
as excitation transfer. Moreover it can be ne-
glected, when the exciting-photon energy is in
the region of the absorption band of the donor. ]

The hot-luminescence spectrum changes with
time t. Therefore, if it overlaps with the absorp-
tion spectrum A(E') of the acceptor to a greater
extent at some t's for t «, than the ordinary-
luminescence spectrum does, then the rate of
hot transfer becomes much larger than that of
ordinary transfer. When the pulse width &t of the
exciting photon is much larger than 7„,however,
hot transfer has already terminated when obser-
vation starts. Then, the rate that we ean observe
is only the rate 4p of ordinary transfer or the de-
cay time TF (=T,/[1+ (k, + k')&,]] of luminescence
from the excited donor, where &p and 0' repre-
sent respectively the radiative lifetime and the
nonradiative decay rate other than the 4, under
consideration. The presence of hot transfer,
however, reduces the quantum yield q& of lumi-
nescence from the value [1+(k,+ k')~ ] ' (=TF/~ )
obtained without consideration of hot transfer,
and increases the yield p& of excitation transfer
from the value k,T,/[1+ (k, + k')&, ] (=koTF), as

a '=2S,u,r,

with S;=Q; V;,'/&~, . These equations are justi-
fied when S, »I~. We get from (1)

with

(S, + S.)k BT'
A

k gT' =pQ "' " coth
d+ a 8

much larger than the average phonon energy@.
Such a case has often been found in solid-state
physics, chemistry, and biophysics. ' We will
show in this case that overlap between D (E', t;E)
and A (E') is surely enhanced at some t's smaller
than T„,and moreover that the enhanced transfer
can be described by n„[or,more precisely,
ln(1 —n„)]with activation energy E„smaller than

&& or even vanishing. When 1&-E& is large
enough, nH can be larger than k,TF in (4).

The thermally activated temperature depen-
dence of k, is obtained when both D (E') and
A(E') in (1) have a Gaussian shape (around ener-
gies E„andE„respectively), '

(E~) [(2~)1/2g ] 1 exp[- ' (E~ -E )2/& ]

where D(E') is obtained by replacing E, and b,
with &d and &d, respectively, and their widths
&& for i =a and 4 are determined by

&,' =Q JV;, ' coth(~~&~ J/k BT),

where t/'&, - represents the interaction with the jth
phonon with energy ~, . At high temperatures of
k pT» &@, we get for i =& and d

nF = (1 —nR)TF/To,

nR =koTF + ne(1 -kgF),

where p„represents the quantum yield of hot
transfer given by

nR —-1 —exp[- J k(t;E)dt ],

(3)

(4)
where 7' represents the effective temperature
which approaches T at high temperatures. The
activation energy E~ of 4, is given by

E =~(E„-E.}'/(s, + s.).

when 7 „«7&.In some cases g& can even be
larger thank, && in (4). When we measure either
(Top TF t nF) or (7 F rko& nR) we can get ng from (2)
or (4). In the usual analysis, however, one con-
siders that from measurement of only two of
these three quantities we can obtain the remaining
one by using the assumed relations nF =TF/T, or
g Q kpT+ ~

In the following we investigate in some detail a
case where 4p has a thermally activated tempera-
ture dependence with an activation energy E&

D(E') obtained above is realized when the exci-
tation of the donor has an interaction with phonons
linear in their coordinates, with a coupling con-
stant proportional to Vd, for the jth phonon. "'
In this case D(E'; t; E) also has a Gaussian shape,
given by"

1 [E'-E„(t;E}]'
(2~)"'z (t) 2r, (t)'

where E~(t; E) and A~(t) represent respectively
the time-dependent peak energy and width of the

1710



VQLUMK 50, NUMBER 21 PHYSICAL REVIEW LETTERS 2) Mx Y &98)

hot luminescence, given by psec. Time t in these equations is determined
with an uncertainty much smaller than 2v/~ but
much larger than 2vh/6, .

E,(t; E) sweeps in time t approximately the en-
ergy region from E~ —E to E, +E. Then, if the
peak energy E, of A(E') is located inside this en-
ergy region, E~(t; E) crosses E, at some t's.
Even if E, is located outside, overlap between
D(E'; t; E) and A(E') is still enhanced since E, (t;
E) approaches E, at some t's. The activation
energy FH of g„vanishes in the former case
while in the latter case it is smaller than the E,
of &, determined by overlap between D(E') and
A(E'). In order to obtain E„,it is convenient to
introduce

E„(t;E) = [1-~(t) ]E, + r(t)E,

a, (t)' = [1 —r(t)'] a, ',

with

( )
Z~(I'u~ /~~)c

Now r(t), starting from r(0) =1, shows a damped
oscillation because of the dispersion of the cu,.'s.
When the width of the dispersion around v is de-
noted by 2~~, the amplitude of the damped oscil-
lation decays with a rate of about z/~~, which
gives the VR time Y„ofthe donor. Therefore,
E, (t; E), starting from E„(0;E)=E, also shows a
da
ing
bec
co
osc

with

mped oscillation around E~, while b,~(t), start- E~=-4{E-E,)'/S, ,
from ~~(0) =0 and tending to n. ~ for t » 7„,
omes minimum each time }E„(t;E) —E~ ~

be-
mes maximum. The average period of these
illations is 2n/&u, which is of the order of 0.1 where s is the sign of (E~-E,)/(E E„)an-d ~g~

&1. Then we get from (2)

k(t;E) = (J'/h)(( S+S,)kBT'[1-g'r(f)']/m} "'exp[-E~(t;E)/kBT'],

We define E„byln(l -q„)~ exp(-E„/k~T ). Then, from (5), E„is given by the minimum value of
E~(t;E) obtained under ~r(t)~ & 1. Thus we get

for E~&g E~,

E„=i[(E„)"~—}g}(E~)'"]'/(1-g'), for@'E~&E~&E„/g', (10)

0, for E~)E~/g .
E~ decreases continuously, starting from E»
with increasing E~.

It is possible to reinterpret the results obtained
above in terms of the configuration coordinates
Q, and Q, of phonons which describe respectively
the optical properties of the donor and the ac-
ceptor. The adiabatic potentials associated with
the ground and the excited states are respectively
written as W, =Q /4S, and W„=(Q; —2S;)'/4S,
+E,+ S, with i =d and the plus sign in + S; for the
donor and with i =a and the minus sign for the ac-
ceptor, where Q,. was chosen to have a dimension
of energy for convenience. ' We introduce new
coordinates by Q =—Q„—Q, —2S„and

q -=(s./s, )'"(q„—2s, ) + (s,/s. )"'q..
The optical excitation of the donor occurs at (Q~
=E, +2S„E,Q, =O}, wh-ere W„-W„,=E, that
is, at the point P, (Q = —(E —E,), Q'= —(S,/
S,)'"(E-E,)}. After the excitation, we get the

adiabatic potential S'~, +W„,which is rewritten
as

W(q, q') =-'(Q'+Q")/(S +S.)+E +S,
and the phonon system relaxes into (Q =0, Q' =0}
which is called point O. The excitation transfer
occurs at (q =E,-E„Q' = 0}for W~, +W„=W„
+W„,which is called point R. The energy dif-
ference of W(Q, Q') between points R and 0 gives
E„of(6), while that between P and 0 gives E~ of
(7). The direction cosine between vectors PO
and OR gives g of (8). Thus E~ represents the
energy dissipated by VR of the donor from P to
0, during which excitation transfer is greatly en-
hanced. Therefore E~ can be called the phonon-
kick energy, while g describes the direction PO
of the phonon kick. Moreover 1 —

~g~ describes a
misfit between PO and OR in which direction ex-
citation transfer occurs. As will be shown else-

1711



VOLUME 50, NUMBER 21 2$ Mwv 198$

where, E +E„(t;E)equals the minimum value
E of the total energy of the phonon system meas-
ured from the relaxed point 0 obtained under the
condition that the value of the reaction coordinate
Q reaches E„-E,at time t when that of the ener-
gy-accepting coordinate Q, was E~+2$„-Eat
time zero (.Here, the minimum energy on the
start line Q, =E„+25„-Eis obtained at point P
with energy Ez, while that on the goal line Q =E,

E, -is obtained at point R with energy E~.) It is
essential in this statement that even if we fix co-
ordinates Q and/or Q~ the phonon system has
many degrees of freedom other than Q and Q„
since Q and Q„area linear combination of many
normal-mode coordinates. Energy F~ is supplied
by the optical excitation of the donor, while E~(t;
E) must be supplied by thermal fluctuations of the
phonon system itself occurring within the ground
electronic state at a temperature T. This is the
origin of the exponential factor appearing in (9).
Since E must satisfy E - E» the minimum val-
ue E„ofE„(t;E) should satisfy E„~E„E~,a-s

in (10).
No intentional determination of q~ from experi-

ments has been done yet. But the presence of g„
can be inferred from observations' that the ex-
citation (or electron) transfer rate depends on
the exciting-photon energy. In fact, in (4) only
i)„depends on it through Ez given by (7). More-
over, when the thermal-equilibrium rate /e, has
an activation energy E~, the present work shows
that g„rises steeply as the activation energy
E„ofg~ decreases with the increase of E~ as
in (10), although i)„becomes saturated after E„
vanishes when E~ exceeds a certain critical
value given by E„/g'. Since E~(t; E), whose
minimum value is E~, is determined by dynamic
trajectories of the phonon system from points P
to R during VR after optical excitation, an ex-
perimental determination of E~, if performed,
will shed light on the dynamic behavior and fluc-
tuations of a nonthermal-equilibrium phonon
system. As a theory of chemical reactions in
such a system, we have the Rice-Ramsberger-
Kassel-Marcus theory, "which regards reactions
as occurring after complete randomization of
the excess vibrational energy E~ among various

modes of a small molecule. This statistical
theory gives an E~ dependence of E~ different
from that given by the present dynamical theory,
since E„of(10) depends explicitly on the direc-
tion of the phonon kick. This fact has also been
pointed out in connection with recombination-en-
hanced defect reactions, "where electron-hole
nonradiative recombination at deep-level defects
in semiconductors greatly enhances various re-
actions such as production and movement of de-
fects.

The generalized Forster formula based on the
"golden rule" is justified only in the nonadiabatic
limit where because of small J transitions are
rare even at an instant when the phonon system
passes through point R.' Reinterpretation of the
activation energy E„of(10), given in the para-
graph below (10), from the standpoint of energy
minimization, however, does not depend on
whether a transition at point R is rare or not.
Therefore, applicability of (10) is not limited
only to the nonadiabatic limit. (Remember that
differences between this limit and the opposite
adiabatic one manifest themselves essentially
only in the preexponential factor of a rate, not
in its activation energy. ')
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