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Bethe A-nsatz Solution of the Anderson Model of a Magnetic Impurity with Orbital Degeneracy
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A model for Ce impurities is considered, consisting of the 4f singlet and a multiplet
of total angular momentum j of the 4f ' configuration hybridized with conduction states of
the metal {U—~ limit of Anderson's model). The model is solved by a Bethe Ansate and
exact expressions for ground-state properties, e.g. , valence, spin and charge suscepti-
bilities, and resistivity, are given.

PACS numbers: 75.20.Hr, 72.15.Qm

Several models for magnetic impurities in met-
als, e.g. , the Kondo problem and the Anderson
model, have recently been exactly diagonalized' '
by means of Bethe's ~+a«. ' In particular for
the nondegenerate Anderson impurity, Tsvel. ick
and Wiegmann' have shown that the model is com-
pl.etely integrable and Kawakami and Okiji de-
termined the structure of the ground state. Wieg-
mann and co-workers' "obtained the low-tem-
perature thermodynamics of the nondegenerate
(symmetric and asymmetric) Anderson impurity.

The purpose of this Letter is to present exact
ground-state properties of a model. for Ce im-
purities (mixed- or integer-valent) which includes
the orbital degeneracy of the 4f level. s. The
modeV' consists of highl. y correl, ated f states of

the impurity and conduction states of the metal.
From the f states only the 4f ' configuration and
the Hund's-rule ground multiplet of the 4f ' con-
figuration of total angular momentum j=2 are
considered. Al!. other states, e.g. , the 4f" con-
figurations for n& 1, are excluded because of the
large Coulomb repulsion and a large spin-orbit
coupling. The conduction electron states are ex-
panded in partial waves around the impurity.
Only the conduction states with total. angular mo-
mentum j hybridize with the impurity 4f states.
If we assume a contact hybridization, Vb(r), only
"s waves" are scattered by the impurity. The
problem can then be regarded as half-dimensional
and only forward-moving particles need to be
considered. ' ' The Hamiltonian is given by

II=& fdxc r(x)(—i 8/sx)c (x)+&2 I j r&n j&rnl +vZ fdx 6(x)[c r(x)I0&&jml+I jrn&&0lc (x)],

where e is the f -level energy and the bras and
kets denote the impurity states, i.e. , IO) the 4f'
singlet and I jrn) the 4f' multipl, et (Iml ~j). The
dispersion of the conduction electrons has been
linearized in the momentum around the Fermi
energy. Note that depending on & —&F, eF being
the Fermi energy, the impurity has a magnetic
moment, has a mixed valence, or is nonmag-
netic.

Bethe's Ansatz' for the N-electron wave func-
tion of the model. (1) can be constructed in anal-
ogy to Ref. 3. It is the superposition of bvo
terms': (a) The N-particle Fermi sea with no

f electron and (b) the (N 1)-elect-ron Fermi sea
with the impurity in a state I j rn) . The term (a)
completely specifies the l.atter term. The form
of part (a) is the standard one,"

(g = +~ [Q, P] exp[ik~~xo, +...+i'„xe„], (2a)

where Q and P are permutations of the coordinates
and charge rapidities kj, respectively. The col-
umns &J, of the N! &&N! matrix [Q, P] satisfy the

rel. ations

aha y aby bey ab y bc y aby bcij p'p

(2b)—iV k,. -k,.
~ j k k i@2 k k ~@2 aQ)

where P„permutes the coordinates a and b. The
energy of the system is given by

Z= Qk, . (2c)
j=l

For j= 2 the above equations reduce to the U-~
limit of Wiegmann's solution. '

Periodic boundary conditions reduce the prob-
lem to a set of eigenvalue equations. These ei-
genvalue equations are the same as those derived
by Yang [see Eels. (4)-(11) in Ref. 15] for the
fermion gas with ~-function interaction, if we
identify the interaction strength c with —V2. Mod-
el (1) then corresponds to a one-dimensional elec-
tron gas with attractive contact interaction, but
with the energy given by (2c).
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The set of eigenvalue equations has been solved
by Suther1. and~' for arbitrary Young tableau for
the 5-function gas. Specializing this result for
(2j+ 1) spin components we obtain (2j+ 1) sets of
nonlinearl. y coupled rapidities ( ('i, where/= 0,
.. ., 2j labels the sets and o. is the running index
within each set. The equations determining the
rapidities $

'~ are to be solved in the thermody-
namic l.imit.

Attractive forces between fermions tend to bind
the electrons in complexes, which are character-
ized by complex rapidities. ' """ Since onl, y
electrons of different spin components interact,
we may build complexes of up to 2j+ 1 electrons.
A complex of n electrons (n(2j+1) is charac-
terized by one real g(" '~ value and in general
complex $(') values, l(n —1, which are related

g,&»=g(" "+~pV', l-n-l, p=--'(& —i-1),--'(~-&-3),.. ., —.'(~-l —1).

Hence a complex of n electrons is completely determined by one ~ea& ('" " rapidity.
For the ground state the number of (2j+1)-particle complexes, M, is maximum in the absence of an

external magnetic field. Taking the thermodynamic limit such that M/L remains constant, where L
is the length of the box, we obtain a Wiener-Hopf integral equation for the density distribution function
v oi the $

~"~ rapidities:

1 2' , PV2cr($') 2j +1 1 [2(2j+1)]V2
(&- ~')'+(PV')' » ~L (&- ~)'+].[-'(»+ 1)l V'j' ' (4)

Here Q is the Fermi level determined by

M/I. = 5 d~ o(~),

and y is a cutoff function for large (, which is 1 around the Fermi level and bounds the energy spec-
trum from below. The l.ast term in Eq. (4) is the impurity contribution.

The solution of the Wiener-Hopf equation can be constructed in analogy to other impurity mod-
els.""" The density & is split into o'„„, and o',.~p, the former determines Q and the latter yields
the f -level occupation

~, =-+—,. [ ix+0]""e p[i&x 2(2j+—1)~maxi],
1 i " dx I'(1- 2i(2j+1)x)

2m „x I' 1 ——sx

where & is a dimensionless invariant coupling related to the f -level. position. The valence varies
smo othly from the localized moment (nz—- 1) to the nonmagnetic (nz —-0) region as illustrated in Fig.
1(a). The charge susceptibility y,„=-sn~/&e shows a peak in the mixed-valence regime [Fig. 1(b)].

The resistivity due to the impurity is determined from the scattering phase shift, 5, given by Frie-
del's sum rule, "6=en&/(2j +1). The resistivity normalized to its value for the localized moment is
shown in Fig. 1(d). Andrei, Furuya, , and Lowenstein' have obtained the phase shift for the spin--,' Kon-
do problem through the "hole" excitation spectrum for the magnetic rapidities. Analogously, the 6 ob-
tained from the "hole" excitations of Eq. (4) agrees with Friedel. 's sum rule.

In an external magnetic fiel.d the ground state has a finite fraction of complexes of fewer than 2j+1
electrons. Let us recall that a complex of n electrons is characterized by one real. $~" ' rapidity.
When the thermodynamic limit is taken we introduce 2j+1 density functions for the real rapidities
$~'~, v('~($), l =0, . . ., 2j. Here o~") reduces to the density o in Eq. (4) for vanishing field. A system
of 2j+1 l.inearly coupled Wiener-Hopf integral. equations for the densities is then obtained. If we as-
sume that the Zeeman energy is much smaller than the bandwidth, 0 " can be el.iminated from the
system of equations. We obtain for l =0,..., 2j —1

2j-1 Bq
""(&) Z «' "(&')

1 oo

2' ;&&,&„sinh[(j ——,l)V'x]
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where

K„(x)= (exp[(P, ,*—I -q)(V'/2)l xll sinh[-,'(P, *+1)V'x]
—exp(- j V'l xl) sinh[-', (I + 1)V'x] sinh[ &(q+ 1)V'x] /sinh[( j+ &)V'x] J [sinh(2 V'x)] ',

sin(m[(3+1)/(2j+1)]) ", („.), — m]'
(9)

and p, ,*=min(l, q) if l4:q and p, , *=l —1. The integration limits B, are determined from the Zeeman-
split f -level occupation numbers. The B, are in general not all equal. The first term of the right-hand
side of Eq. (7) is the Kondo part and the second term is the mixed-valent contribution induced by
charge fluctuations. The mixed-valent contribution has been linearized in the field since the Zeeman
energy is much smaller than V'.

For small fields the magnetization can be extracted by inspection'0 from Eqs. (7)-(9) and we obtain
for the zero-field magnetic susceptibility

j(j+1) 2m - ~™/g+i/2i
6 (2j+1) I'[1+1/(2j+1}]

(2j+1}
I'(1 —i(j+—', )x) [-ix+ 0]""

(
.

/ ) /( )
exp['f &x —2(2j+1)&l xl]l ~ (10)

Here I' = V'/2 on the left-hand side is the reso-
nance width of the impurity level. The first
term is the Kondo susceptibility and the second
one is the mixed-valent contribution. Both con-
tributions are shown in Fig. 1(c) as a function
of the invariant coupling K. For large l

E
l the

invariant coupling can be related by perturbation
theory to the bare f -level energy e. Note that
for ' +f 2 and j=, the Kondo part of g, is already
larger than the mixed-valent contribution.

The Kondo contribution of Eqs. (7)-(9) (set a,-=0) is just the Coqblin-Schrieffer model. Identi-
fying acs '")=v "and inverting the matrix 1+%
we obtain the Bethe-&~&t& equations of the
Coqblin-Schrieffer Hamiltonian. '

The magnetic field dependence of the Kondo con-
tribution can be obtained by solving Eqs. (7)-(9).
This is in general not possible by the Wiener-
Hopf method, since the 8, are not all equal for
j)1. I succeeded in constructing an approximate
solution for j)I (to be published elsewhere) and
obtained in this way the magnetization, the f-
occupation numbers, and the magnetoresistance.
The magnetization is linear in H for small fields,
while for very large fields we obtain

], 1 ln ln(H/T„)
2j+ f ln Q T„2j+121n H T„

and the resistivity decreases as O(ln'(H/T„) ),
T~ being the Kondo energy.

From the exact low- and high-field magnetiza-
tion we obtain the Wilson numbers, ""tV( j), for
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FIG. l. (a) Valence, (b) charge susceptibility,
(o) spin susceptibility, and (d) resistivity as a function
of the invariant coupling e. The resistivity is normal-
ized to its value for a localized moment. The dashed
line in (c) is the mixed-valent susceptibility, the full
line is the total y, , and the difference bebveen the full
and dashed lines is the Kondo susceptibility. The Kondo
part depends exponentially on &.
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the SU(2j +1) Kondo model; in particular for Ce
we have W(—52)/W( —', ) =1.0434.

In summary, I have given exact expressions
for several measurable quantities, y„p, nf,
and X,h, for a Ce ion in a metal at low tempera-
tures in terms of two parameters: the energy
scale I and the dimensionless invariant coupling

Hence, the measurement of two independent
quantities, e.g. , the valence and the spin sus-
ceptibility, 2S completely determines these two
parameters and hence all other quantities. A
direct comparison with experiment is, however,
difficult since the model (1) neglects crystal
fields.

The author is indebted to P. B. Wiegmann and
H. Schulz for several helpful discussions. The
author is a Heisenberg fellow of the Deutsche
Forschungsgemeinschaf t.
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