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in time without interfering with each other. In
such cases the spikes are expected to give multi-
ple filaments at various locations across the
cross section of the main beam.
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Numerical evidence is presented for period doubling and chaos at attainable laser
powers in a model for optical tristability comprising two ring-cavity modes coupled via
a J= 2 to J= 2 transition. A sequence of periodic windows found embedded in the chaos
for this model has also been found in the Lorenz equations. It is suggested that it begins
an infinite sequence of a new period-doubling type

PACS numbers: 42.65.-k

The first, and perhaps the simplest, example
of a nonlinear flow containing chaos was studied
by Lorenz. Some years ago Haken observed that
the single-mode laser equations may be trans-
formed into the Lorenz equations. ' However, the
parameters required to see a chaotic laser output
were unrealistic. ' Recently, Ikeda has predicted
that the output from a bistable ring cavity may
self-oscillate and show period doubling and chaos. '
His proposal has renewed interest in nonlinear op-
tical examples of chaotic dynamics.

Laser power requirements limit the prospects
for all optical experiments based on Ikeda's pro-
posal4; although in a related hybrid system' both
pe»«ic and aperiodic self-oscil. l.ations have
been observed. ' In this Letter we propose an all
optical system which gives chaos at attainable
laser powers.

We consider the model for optical tristability
proposed by Kitano, Yabuzaki, and Ogawa' and

extended by ourselves' to include saturation and
absorption. Two circularly polarized ring-cavity
modes, with complex amplitudes &, and &» in-
teract via a &=~ to &=z transition (Fig. l) and
are driven by external fields with equal amplitude

After adiabatic elimination of the atoms, the
susceptibility derived from the ~ = ~ to J = ~ inter-
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FIG. l. Energy-level diagram for two-mode inter-
action with J = 2 to J = 2 transition.
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action is the same, with a reparametrization, as that obtained in Ref. 8 by using three-level atoms
and eliminating the ground-state coherence. ' The coupled cavity mode amplitudes obey the driven-
oscillator equations,
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Time is measured in units of the cavity decay
time ~ ' =F2/zc, where 2 is the cavity length
and & is the cavity finesse; T, /2 and T, '/2 are de-
cay times for the population differences between
ground- and excited-state magnetic sublevels,
respectively, (1/r, + 1/r, ') ' is the excited-state
lifetime, and T, is the decay time for the optical
dipole coherences; p is the reduced atomic di-
pole matrix element; ~ =1',~ and p =& '& are
atomic and cavity detunings (equal for each mode),
and C = (1+ 5') 'nI.&/4&, where & is the resonant
absorption coefficient and I- is the propagation
distance in the medium; T is the transmission
coefficient, and p~ the accompanying phase shift
at the cavity input mirror.

We will define 1' =
I ~l ' and I, , =

I ~, , I
'. In

Fig. 2 we plot the steady- state solutions for X, ,
as a function of ~ for fixed , &, p, and g. The
inset features the transition to optical tristability—one symmetric and two asymmetric branches. '
Beyond this weak-field regime the asymmetric
branches undergo a Hopf bifurcation. In Ref. 8
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we found this behavior in the dispersive limit.
It is retained here in the presence of both absorp-
tion and dispersion. For 145&F&185 all three
steady states are unstable and therefore some
form of self-oscillatory output is assured. In-
deed, we have numerically integrated Eqs. (1),
and just beyond the Hopf bifurcation point all
trajectories are attracted to simple limit cycles
enclosing each unstable asymmetric fixed point.
At larger values of ~ we find chaos.

Before this system can be judged as a candidate
for experiments we require some indication of
the parameter range over which chaotic dynamics
might be observed. Only then can power and sta-
bility requirements be estimated. To this end we
have carried out a survey in (Y, 0) space. We

stepped Y in units of 1 and p in units of 0.1 to
generate the map shown in Fig. 3. The attractor
identified at each point is represented by a square
centered at that point. In addition to achieving
our stated objective this survey has uncovered a
result of more fundamental interest. Several
periodic windows found embedded in the chaos
appear to begin an infinite sequence of a new

period-doubling type. We have verified that this
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FIG. 2. Steady-state intensities X& and X2 vs 1' for
C = 4, 6 = 5, y= 15, and g = 0.03. Solid (dashed) lines
denote stable (unstable) states.

FIQ. 3. Map of attractors in {Y,p) space for C = 4,
6 = 5, and q = 0.03: (a) fixed point; (b) limit cycles en-
circling each unstable asymmetric fixed point; {c) hys-
teresis; (d) chaos; (e) assorted limit cycles encircling
both unstable asymmetric fixed points.
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FIG. 4. Symmetric and asymmetric limit cycles in
the approach to chaos from above: g = 4, 6 = 5, y = 15,
g = 0.03, and Y =170 (solid curve), Y= 166 (dashed
curve).

sequence, though previously unreported, occurs
also in the Lorenz equations. We will review
these findings first.

In Fig. 3 the chaotic region is bounded below by
a transition, with hysteresis, between the stable
limit cycles encircling each asymmetric fixed
point and an aperiodic attractor encircling both
(see Fig. 6). A similar hysteresis occurs in the
Lorenz equations, although there is no prelimi-
nary Hopf bifurcation and the transition is be-
tween an aperiodic attractor and stable fixed
points. ' In the unshaded portion of Fig. 3 our
survey turned up an assortment of stable cycles
encircling both asymmetric fixed points. A

closer look reveals the following approach to the
chaotic region from above: (l) A symmetric cy-
cle (solid curve in Fig. 4) bifurcates to a pair of
asymmetric cycles (dashed curve in Fig. 4 and
its reflection about X, =X,). (2) Each asymmetric
cycle period doubles to chaos (Fig. 5). (3) The
two asymmetric aperiodic attractors so formed
merge on a symmetric aperiodic attractor (Fig.
6). This is again analogous to behavior in the
Lorenz equations. " Continuing into the chaotic
region we have found numerical evidence suggest-
ing that the development shown in Figs. 4-6 mere-
ly represents the first in an infinite sequence of
such bifurcations to chaos. The further members
of this sequence appear as periodic windows
embedded in the chaotic region. The two-looped
and four-looped cycles in Fig. 7 were found in
our survey. They each bifurcate to chaos via the
foregoing steps. Then, assuming a geometric
convergence of successive periodic windows we
have looked for and found an eight-looped cycle
at F =160.44. Moreover, we have found the same
sequence, up to this eight-looped stage, in the

FIG. 5. Period doubling to chaos from asymmetric
cycle in Fig. 4: p= 4, 6= 5, y=15, rj = 0.03, and Y
= 165; (i) Y = 164.9~ (ll) Y= 164.88~ (ill) Y= 164.8.
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FIG. 6. Aperiodic attractor for C = 4, 6= 5, y= 15,
r)= 0.03, and Y= 163.7.

Lorenz equations. Note that each new symmetric
cycle looks like a superposition of two asymmet-
ric versions of its predecessor. This suggests
a new period-doubling mechanism involving a
merging of these three cycles on a homoclynic
orbit.

From Eq. (3) the total laser power density is
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given by

4T( kc 2 -1,-2P = s 10
(1/T 1/, ), q(l+ 5 )T 5 Y

in W cm ', where
1 p l has been expressed in

terms of the radiative lifetime I'& and ~ is the
wavelength of the atomic transition. We base our
estimate of I' on the D, line of sodium using 1600
MHz of collisional broadening to average over
the hyperfine structure. We initially assume I'&
= (1/T, +1/T, ') ' and & =&/T, and with T2 =100
psec, 4 = 5.9&10 ' cm, + =200, ~ = 5, and q =0.03
we find I' =6.3Y mWcm '. Then the values of Y

in Fig. 3 correspond to minimal power require-
ments, of the order of 1 Wcm '. In the presence
of intracavity and mirror transmission losses
(& &~/T) this estimate is multiplied by &/&T (an
order of magnitude if resonant empty-cavity
transmission is reduced to 1/o).

With rapid depolarization of the excited state
(T,'«,T, T, , T, ') and T, =100 psec, g =0.03 im-
plies T,/2 =270 nsec. Then setting ~ ' =T,/2
(111.5-cm cavity with & =200) we obtain b. p
=2« '&f =0.17 for a laser frequency jitter rf

8
X2

! =100 kHz. This provides the frequency stability
required to resolve the chaotic region in Fig. 3.

These estimates are very optimistic. However,
they require some qualification. The present
theory adiabatically eliminates the atoms and in-
cludes only a single longitudinal cavity mode.
This imposes the restriction

K » vi/2, 7,'/2, (1/Ti +1/Ti'), T2 »g/27rc. (5)

We have set ~ ' =7',/2, and while chaos may per-
sist under these conditions, to strictly justify
adiabatic elimination of the atoms either the
atoms must relax faster or the cavity slower.
Quenching the atomic decay and lowering T,/2
accordingly will raise the power requirement by
T~/(1/T, + 1/T, ') '. Alternatively, better fre-
quency stability and correspondingly higher cavity
finesse lowers the power required. Also, while
1600 MHz of collisional broadening convincingly
averages the sodium hyperfine structure, to justi-
fy the single-mode assumption I', should strictly
be increased by an order of magnitude (2/2~c
=590 psec). While this reduces the power re-
quirement accordingly, the effeet of the hyperf inc
structure becomes more uncertain. Of course,
an alternative atomic system might circumvent
this problem.
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FIG. 7. Symmetric limit cycles from two periodic
windows embedded in the chaos: (". = 4, 0 = 5, p= 15,
Tj

= 0.03, and (a) Y = 163.6, (b) p = 161.
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