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gandom point pinning of ideal or defective flux-line lattices is simulated on a computer.
For weak pins, Larkin and Ovchinnikov's two-dimensional collective pinning is con-
firmed: j =constxn&(f& )/R&c~6 (j~ is the critical current; n» f&, andR& are the

density, force, and range of pins; and c« is the shear modulus). The constant is deter-
mined. Defective lattices are pinned more strongly by factors 1.3 to 3, explaining the
observed history effect. A pronounced jump in the curves j, (f&) indicates the onset of
plastic deformation.

PACS numbers: 74.60.Ge

The statistical summation of pinning forces in
type-II superconductors is still a controversial
problem. The theory of Labusch, ' conceived for
widely spaced random point pins, appears to dis-
agree with many experiments and to be incon-
sistent. ' 4 A pinning threshold predicted by this
"dilute limit" theory and its improved versions'
has been reported only once' but usually is ab-
sent in experiments. Recently, Larkin and
Ovchinnikov' (LO) proposed a theory of "collec-
tive pinning" which was widely believed to under-
estimate the critical current j, even more than
previous theories. The situation changed very
recently when collective pinning, in its two-
dimensional (2D) form, was confirmed with high
accuracy on sputtered thin films of amorphous
Nb3Ge and Nb, Si with extremely weak pinning by
Kes and Tsuei. ' The agreement of experiments
with the 3D LO theory improved considerably
when Thuneberg, Kukijarvi and Rainer' showed
that the correct microscopic treatment yields
elementary pinning forces f' which are larger
than assumed so far.

In this Letter I report on 2D computer simula-
tions of flux pinning which give the following
answers to long-standing questions: (a) The 2D
LO result, j,—f~', is confirmed for weak, and
in some cases for arbitrarily strong, pinning.
(b) Some functions j,(f~) exhibit a, pronounced
jump but not a genuine threshold. (c) The history
effect' is due to much stronger pinning of a de-
fective ("amorphous") flux-line lattice (FLL) as
compared to the ideal FLL. (d) The observed
steep initial slope of the force-displacement
curves' is reproduced. (e) For strong pinning
the existence of a. (modified) direct summation
limit, j, -f~, is confirmed. (f) The concept of
elementary pinning forces should be modified:
In order to have simple laws j~f~' ,and j, ~f~
in a large range of pinning strengths, one has to

interpret f~ as the root-mean-square pinning
force rather than (as is usually assumed) the
maximum force, f,„=A~/B~, exerted by a pin
with interaction range B~ and amplitude &p De-
pending on the type of pins, relaxation may re-
duce or enhance f~ from its rigid-lattice value.
Typical curves j, (f,„) for attracitve pins exhib-
it a, quadratic region (weak, collective pinning),
a jump (onset of plastic FLL deformation), a.

flat region (flux-line trapping), and a linear,
very strong-pinning region.

These results are expected to apply qualitative-
ly also to 3D pinning, apart from the weak-pin-
ning law for which a 30 simulation should
yield'' '" j, ~ f~4. As noticed first by Kes, '2

the LO theory predicts a change of dimensional-
ity, 3D-2D, when pinning in a film or ribbon
(perpendicular to an applied magnetic field) be-
comes sufficiently weak for the correlation length
along the field, I-„ to exceed the film thickness
d. In this case our 2D simulation becomes quan-
titative and may help to identify the pins in a
given mater ial.

Our simulation starts from the total energy per
unit length

V„(r)=A„v(r/R„), V (r)=A v(r/R ),
v(V) = exp(-V'). (2)

U=E Z v.(I;—,I)+ZZv, (I;—,' 'I)
i jAi i

(I)

of a system of N„vortices with variable positions
r;=(x;;y;) and N~ pins with fixed random posi-
tions r; in a roughly quadratic basic area A.
= 1.„1-,with periodic boundary positions. Instead
of using the correct interaction potentials be-
tween vortices, "" V„(r), and between vortices
and point pins, "V~(r), for better transparency
we choose Gaussian-like potentials,
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FIG. 1. Mean pinning force E(X) (solid line) and
mean square pinning force W(X) (dashed line} vs mean
X coordinate of the vortices for N„= 780, N&= 210,
R„=0.6, R& = 0.25, and pin amplitude A& =- 0.02, -0.05,
-0.07, -0.1, and -0.2 (attractive pins). The numbers
on the left (right) denote the maximum and minimum of
E (W) in the plotted interval, and the averages E (W)
over a much larger interval. Straight lines indicate
E =0 and the initial slope of E(X).

We fix our energy and length scales by putting
A„=1 and a, =1 (the flux-line spacing). The sys-
tem is then characterized by five essential pa-
rameters: N „, N~, R „, R~, and A~. The vortex
range R„=0.6 (0.7, 0.75) determines the shear
and compression moduli of the FLL, c66=0.2695
(0.1411, 0.0831) and c„=1.994 (2.345, 2. 523)
»c«. Physically, R„, R~, and A~ are related
to the reduced induction b = B/B„and to the Gins-
burg-Landau parameter ~. For example, c«/c»
= (1-b)'/10hz' (K'»1, b»1/2z'), for vortex-
core pinning R~ =0.53b'~'; and near b = 1 we find

A& = const x(1 —b) and A~ /c« = const/(1 —b) (our
main parameter).

At least 72 qualitatively different eases may be
distinguished: The pins may be dilute, matching,
or dense (N~/N, «1, =1, or»1), sharp or
smooth (R~ & 0.3 or &0.3), repulsive or attrac-
tive (A~&0 or &0), and strong or weak (A~/c«R~
&1 or &1); the initial vortex positions may be
ideal triangular FLL with two possible orienta-
tions, or amorphous (generated by relaxing ran-
dom positions). From ™900cases investigated
so far, I present in Figs. I and 2 the results of
forty runs with N„= 780, N~ = 210, R„=0.6, and

R~ =0.25 (attractive and repulsive point pins of
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FIG. 2. The averages over I, E (solid line, interpreted as j,) and W (short dashes), the direct-summation
limits E& and E&, Eq. (4) (dotted lines) (left scale), and the ratio E/W (long dashes) and the root-mean-square
vortex displacement at X = 1.2, o. (dash-dotted line} (right scale), plotted vs the pin amplitude A&. The curves E
and W denoted by "am." are for the amorphous lattice; all other curves are for the ideal lattice or independent of
the lattice perfection. The parameters N„, N&, A„, and R& are as in Fig. 1; (a) attractive pins, (b) repulsive pins.
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medium density).
Pinning is simulated in the following way:

First the pins are switched on and the FLL is
relaxed by minimizing (1). Starting from this
virgin state, with (r;&=0 by definition, the FLL
is shifted homogeneously a small distance cK
=0.001-0.0001 along x; then the total pinning
force is compensated by a homogeneous driving
force I acting along x on each flux line, and the
FLL is relaxed by minimizing the function G
= U-N„EX where X =(x, & is the meanx coordi-
nate of the flux lines. By repeating this proce-
dure we should obtain static (i.e. , fully relaxed)
force-displacement curves E(X) (Fig. 1)."'"
For weak pinning, E(X) is smooth and periodic,
with perio«, for x ll (10& and 3'~'a, for x ll &11&.
Transient effects slightly "compress" the first
periods of E(X) For. stronger pinning, E(X) in-
creases first linearly and then fluctuates about
its average value I". If X is oscillated we obtain
hysteresis curves oscillating between +E and -I.
For comparison with summation theories we cal-
culate also the mean square pinning force W{X)
and its average 8". Since the fluctuations of
E(X) and W(X) decrease with increasing N, and

Ã~, we may relate I" and 8' to j, and to the quan-
tity W(0) (Refs. 6 and 7) of large specimens:

j,a=n7 =
n, ((-x. „f (X) »,

W(0)/d=nW =n, « l f, (X) I'»,
where n =N„/A =R/y, =~ ' 'a, ' and n~=N~/A are
the densities of vortices and pins, f, = sU/sr„~ '

is the force exerted by the ith pin, and the aver-
ages are over j andx.

Figure 2 shows 1(A~), W(A~), E/W, and the
direct summation limit in its old (E~) and im-
proved" (E,) versions,

E„=-n~ f~,„/n = (2/e)' 'N~A~/N„R~,

E,-=n, f, /n = (N, W /N „)".
Note that the limit E„ is almost reached: E
&0.54E~ for attractive pins, and I' (0.42E„ for
repulsive pins. The limit I'„ is much too high,
and for repulsive pins even makes no sense. For
repulsive pins W is always below its rigid-lattice
(weak pinning) limit, ' &n~A~', whereas for attrac-
tive pins the ratio W/&n~A~' exceeds unity, goes
through a, flat maximum [= 1.3 at A~ = -0.07 in
Fig. 2(a) ], and then drops below unity [ at A~
= -0.135 in Fig. 2(a)].

The perhaps most striking feature is a pro-
nounced jump of E(A~) occurring in Fig. 2(a)
almost exactly at the threshold value A~= -0.071

predicted from the onset of elastic instabilities
for the isolated pin. "' For short-range (R~
&0.3) attractive Gaussian pin potential (2) this
threshold is at'4

A, h, =2vexp{-,')c«R~'/in(N„). (5)

This jump is most clearly seen in the (linearly
plotted) functions E/W and o=—(l s —(s& l') ~'
(the root-mean-square vortex displacement at
X =1.2). The increase of o indicates the onset
of plastic FLL deformation, a conjecture which
is confirmed by plots of the vortex and pin posi-
tions. Note also the "slowing down" of the fluc-
tuations of E(X) at A~ =0.07 in Fig. 1. The char-
acter of E(X) changes just at the jump of E,
again indicating the transition from the "elastic"
to the "plastic" range. A similar jump in E/W
occurs for repulsive pins in Fig. 2(b). The tran-
sition is broader and starts at a value +p ~0 3
which is somewhat smaller than the threshold
for repulsive pins, "A,h, =0.7 in this ease. If
we start with an amorphous FLL the jump is
absent or of smaller amplitude, indicating that
our amorphous FLL cannot become much more
defective.

For weak pinning the 2D LO result E/W =const
is confirmed both for the ideal and for the amor-
phous FLL. For the ideal FLL we obtain

E/W = 0.035[in(N„/33) ]'~'R, c„. (6)

j,B= W(0) [ ln(R/3ao) ] "i'/20R
~ dc« (7)

which, in contrast to LO's estimate, contains a
numerically determined prefactor (d and 2R are
the specimen thickness and width). Equations (6)
and (7) apply also to the amorphous FLL if the

right-hand sides are multiplied by a factor 1.3

1601

The dependence on R~ and c66 is well established
for 0.6 R„0.75 and 0.0625 R~ -0.4. For R„
&0.6 or R~ )0.4 compression of the FLL may not
be neglected and E/W depends on c«and c».
Note that for sharp point pins (R~ «1) the effec-
tive force range is not half the vortex spacing
[i.e. , R~ replaced by —,

' in (6)] as is sometimes
assumed. For very weak point pins, W = ~n~A~'
is independent of R~ but

E ~ 0.11[ln(N, /33) ]'i'npA~'/R~c, 6

depends or. R~. The logarithmic factor ln(N„/33)
~ ln(L, L, /9a, ') is approximate (for 0.005 (A~
- 0.05) and according to the LO theory" should

slightly depend on A~.
From (3) and {6) we get the 2D collective pin-

ning formula
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