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Bound States of Negative Pions and Neutrons
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By use of standard forms for the various interactions of a system of N neutrons and
g negative pions, it is shown that for a large variety of values of N and Z the system
can become bound. This gives rise to a structure similar to that of an ordinary nucleus,
but in which the protons are replaced by negative pions.
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Ericson and Myhrer' have pointed out that the
real part of the pion-nucleus optical potential is
sufficiently strong that a negative pion may be-
come bound by the strong interaction of the nu-
cleus. However, as has been noticed by Fried-
man, Gal, and Mandelzweig, ' the imaginary part
of the optical potential has the effect of producing
very large widths for these states (of the order
of 2000-3000 MeV), so that they cannot be ob-
served experimentally. We will study in this
paper the case in which a negative pion is bound
not by a nucleus but by a piece of neutron matter,
so that in this case the optical potential is real,
since the pion absorption process, which is re-
sponsible for the imaginary part, cannot take
place when there are only neutrons. Therefore,
these states will be stable, with a lifetime sim-
ilar to that of the charged pion. Another impor-
tant difference between the case when the m is
bound in a nucleus and when it is bound in a piece
of neutron matter is the fact that at threshold the
p-wave spin-averaged pion-neutron amplitude is
10 times stronger than the corresponding pion-
proton amplitude, so that the conditions for bind-
ing are much more favorable when there are
only neutrons.

Of course, a system of ~ neutrons alone cannot
form a bound state, and as a matter of fact at
normal nuclear densities they are unbound by a
large amount, but we will show that the energy
that is lacking can be provided by the pions. This
situation is similar to that of ordinary nuclei,
where if we take N neutrons at normal nuclear
matter density, the self-energy of the system is
very large and positive (which means that it is
unbound); however, the optical potential of a
proton in this piece of neutron matter is very
strong, so that if we let it, the proton can be-
come bound by the optical potential, and the self-
energy of the system decreases. If we now keep
adding more protons (taking due regard of the
Pauli principle), eventually the sum of all the

accumulated binding energies is larger than the
self-energy of the neutrons, and the system be-
comes a bound state of Pf neutrons and Z protons,
which is an ordinary nucleus. We will see in
this paper that the same mechanism will give
rise to bound states of A neutrons and Z negative
pions.

In order to be able to describe this system the-
oretically, we need to know (a) the interaction of
a pion with the distribution of neutrons, (b) the
interaction between the neutrons themselves,
(c) the interaction between the pions themselves,
and (d) the Coulomb interaction. In the case of
part (a), we will use the optical potential of pion-
ic atoms extrapolated to the case of zero proton
density and corrected for the finite size of the
pion-nucleon interaction. Part (b) will be treated
in a local density approximation, with use of the
recent results of Jackson et al. ,

' for the self-
energy of infinite neutron matter, where they
have used for the neutron-neutron interaction the
Bethe-Johnson potential. 4 We will simply ne-
glect part (c) since, as the two pions are in a
state with isospin 2, we have that the mw interac-
tion is extremely weak (both the l=0 and l=2
phase shifts' for the case I=2 are smaller than
I deg for invariant energies of up to 800 MeV).
Finally, part (d) will be taken into account in the
standard fashion.

Let us consider first the interaction of the pion
with the N neutrons. The level shifts and widths
of pionic atoms have traditionally been fitted with
the approximate Klein-Gordon equation"

V'g(r) + P,'g(r) —2~ V(r)g(r) = 0,

(2P/4&) V(r) = q(r) —v p(r)v. (2)

The local and velocity-dependent parts q(r) and

p(r) are given in terms of the neutron and proton

where the optical potential V(r) is of the Kissling-
er form
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densities p„(r) and p~(r) as '

df(r) = —(1+ p/M)fb, [p„(r)+p~(r)]+b, [p„(r)—p~(r}])—(1+ p/2M)B, 4p„(r)p~(r),

P(r) = —(1+ p/M} 'fco[p„(r)+p~(r)]+ c,[p„(r) p—~(r)]]- (1+ p/2M) 'Co4p„(r)p~(r),

(3)

(4)

where p, and M are the pion and nucleon masses, respectively. The parameters b„b„Bpand eo cy Cp,
were fitted by Friedman, Gal, and Mandelzweig' to the very precise data on pionic atoms' (including
those with an excess of neutrons), and they obtained the values

b, = —0.017' ', b, = —0.13@, ', ImB, =0.0475' ', ReB,/ImB, = —1,

co=0.21' ', c, =0.17p. 3, ImC, =0.0425' ', ReC, /ImC, = —0.6.
(5)

If we take Eqs. (3)-(5) in the limit when p~ -0,
we get the optical potential of a negative pion
with a piece of neutron matter:

(2 p/4~) V(r) =
P g„(r)- p, V p„(r)v,

with

pc=0. 147(l+ p. /M) p ',

P, = —0.38(1+ p/M) 'p '.

(6)

(7)

U(k, k') = f„„(k,k')p„(k —k')

=(4w/2p)(Po+ P,k.k')p (k-k'), (8)

with the strengths P, and P, given in terms of the
experimental scattering lengths' z~' ' by

P, = —a, (1+ p, /M) =0.098(1+ p/M) p ',

P = - (&
"+ 2& ")(1+p/M) '

= —0.379(1+ p. /M) '
p, ~.

(9)

Thus, we see that the "theoretical" strengths (9)
are quite close to those given by Eq. (7), particu-
larly the very important P-wave part.

The pion-neutron-matter optical potential (6)
implies a pion-nucleon amplitude with zero range,
which can lead to unphysical behavior. ' In order
to avoid these problems, we will take into ac-
count the finite range of the pion-nucleon interac-
tion by making the replacement

For the purpose of comparison, it is instructive
to construct the pion-neutron-matter optical po-
tential theoretically, which we write in momentum
space as

Fermi distribution"

p, , (r) p [I y e (& s)/d ]
-1

v=0. 569 fm, g=r,N'",

where the parameter r, will be varied so as to
study the dependence of the binding energy on
the radius of the distribution.

I obtained the ground-state solution of a pion
in a piece of neutron matter (which I found to
correspond to the state with angular momentum
I.= 0) by transforming Eq. (1) into momentum
space and solving the resulting integral equation
with a 40-point Gauss mesh, which gives the
binding energy with an accuracy of about 0.1
MeV. I show in Fig. 1 the results for the bind-
ing energy of the pion, for several values of the
parameter r, in Eq. (10}. As we see, the pion
can be bound more easily if r, is small, which
is understandable if we consider that the density
p„(r) in the central region increases when r, de-
creases, and therefore the optical potential be-
comes stronger.

80-
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U(k, k') —U(k, k')A'/(0'+ A')(j'g" + A'-), 20-

where we will use for the range A the value A
= 1 GeV/c which has been obtained by several
theoretical studies. ' "

Since we do not know the density of the piece of
neutron matter, we will assume that it is similar
to that of ordinary nuclei, that is, we will use the

0
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FIG. 1. Binding energy of a pion in the piece of
neutron matter described by Eq. (10), as a function of
the number of neutrons N.
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p, = [3m'p„(r)]'i'. (12)

The energy associated with the Coulomb repul-
sion between the pions will be calculated by as-
suming that the total charge Ze is distributed
uniformly in a sphere of radius P=z &' ', which
gives simply

AC& Z
c 5 ~ ~l/3 (13)

We can now obtain the self-energy of a system
of PV neutrons and Z pions by adding the self-en-
ergy of the neutrons given by Eq. (11) to the
Coulomb energy (13) and subtracting the binding
energy of the Z pions, that is, for a given ehoiee
of the parameter r„

E,"(r,)

=E„(ro, N) —ZB(ro, N)+—,~, . (14)~ /

If the self-energy of Eq. (14) is negative, then it
is possible to form a bound state characterized
by the two integers (N, Z).

As an example, let us consider the case N=20,
ro=1.0 fm, which corresponds to having all the
neutrons in closed shells and a density of neu-
trons similar to that of an ordinary nucleus. "
We get, using Fig. 1 and Eqs. (10)-(13), that (in
Me V)

E~' (1.0o) = 252. 5 —20.0Z+0.318Z'. (15)

The self-energy (15) becomes negative if 18 ~ Z
~45, so that for these values of Z and N it is

In order to investigate whether Z negative pions
and the neutron distribution (10) can form a stable
bound state, we need to know, in addition to the
binding energies of Fig. 1, the self-energy of the
E neutrons and the Coulomb energy of the pions.
Therefore, I describe next the procedure used for
ealeulating these two quantities.

The self-energy of infinite neutron matter has
been calculated recently by Jackson et al. ,

' using
the correlated basis functions (CBF) scheme, " in
which they have taken into account the perturba-
tive CBF correction to second order. From their
results for e(p ~), the self-energy per neutron
obtained from the Bethe-Johnson potential' (see
Table 4 and Fig. 10 of Ref. 3), we calculate the
self-energy of a finite distribution of neutrons as

E„=fe(p~)p„(r)d'r, (11)

where the Fermi momentum p F is related to the
density of the neutron distribution (10) by
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FIG. 2. The set of numbers (Np&Zp) as a function
of the parameter ~p.
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